
To be published in: LISP AND SYMBOLIC COMPUTATION: An International Journal, 4, 3, 1991
© 1991 Kluwer Academic Publishers - Manufactured in The Netherlands

SELF: The Power of Simplicity*

DAVID UNGAR† (ungar@self.stanford.edu)

Computer Systems Laboratory, Stanford University, Stanford, California 94305

RANDALL B. SMITH† (rsmith@parc.xerox.com)

Xerox Palo Alto Research Center, Palo Alto, California 94304

Abstract. SELF is an object-oriented language for exploratory programming based on a small
number of simple and concrete ideas: prototypes, slots, and behavior. Prototypes combine inheritance
and instantiation to provide a framework that is simpler and more flexible than most object-oriented
languages. Slots unite variables and procedures into a single construct. This permits the inheritance
hierarchy to take over the function of lexical scoping in conventional languages. Finally, because
SELF does not distinguish state from behavior, it narrows the gaps between ordinary objects,
procedures, and closures. SELF’s simplicity and expressiveness offer new insights into object-
oriented computation.

To thine own self be true.
—William Shakespeare

1 Introduction

Object-oriented programming languages are gaining acceptance, partly because
they offer a useful perspective for designing computer programs. However, they do
not all offer exactly the same perspective; there are many different ideas about the
nature of object-oriented computation. In this paper, we present SELF, a program-
ming language with a new perspective on objects and message passing. Like the
Smalltalk-801 language [6], SELF is designed to support exploratory programming

*This work is partially supported by Xerox, and partially by National Science Foundation
Presidential Young Investigator Grant #CCR-8657631, Sun Microsystems, the Powell Foundation,
IBM, Apple Computer, DEC, NCR, Texas Instruments, and Cray Laboratories.

†Authors’ present address: Sun Microsystems, 2500 Garcia Avenue, Mountain View, CA 94043.
This paper is a substantial revision of [20], originally published in OOPSLA ’87 Conference Proceedings

(SIGPLAN Notices, 22, 12 (1987) 227-241).

2 UNGAR AND SMITH

[13], and therefore includes runtime typing (i.e. no type declarations) and auto-
matic storage reclamation.

But unlike Smalltalk, SELF includes neither classes nor variables. Instead, SELF
has adopted a prototype metaphor for object creation [2, 3, 4, 8, 10]. Furthermore,
while Smalltalk and most other object-oriented languages support variable access
as well as message passing, SELF objects access their state information by sending
messages to “self,” the receiver of the current message. Naturally this results in
many messages sent to “self,” and the language is named in honor of these
messages.

One of the strengths of object-oriented programming lies in the uniform access
to different kinds of stored and computed data, and the ideas in SELF result in even
more uniformity, which results in greater expressive power. We believe that these
ideas offer a new and useful view of object-oriented computation.

Several principles have guided the design of SELF:
Messages-at-the-bottom. SELF features message passing as the fundamental

operation, providing access to stored state solely via messages. There are no vari-
ables, merely slots containing objects that return themselves. Since SELF objects
access state solely by sending messages, message passing is more fundamental to
SELF than to languages with variables.

Occam’s razor. Throughout the design, we have aimed for conceptual economy:
• As described above, SELF’s design omits classes and variables. Any object can

perform the role of an instance or serve as a repository for shared information.
• There is no distinction between accessing a variable and sending a message.
• As in Smalltalk, the language kernel has no control structures. Instead, closures

and polymorphism support arbitrary control structures within the language.
• Unlike Smalltalk, SELF objects and procedures are woven from the same yarn

by representing procedures as prototypes of activation records. This technique
allows activation records to be created in the same way as other objects, by
cloning prototypes. In addition to sharing the same model of creation,
procedures also store their variables and maintain their environment
information the same way as ordinary objects, as described in Section 4.

Concreteness. Our tastes have led us to a metaphor whose elements are as
concrete as possible [14, 15]. So, in the matter of classes versus prototypes, we
have chosen to try prototypes. This makes a basic difference in the way that new
objects are created. In a class-based language, an object would be created by instan-
tiating a plan in its class. In a prototype-based language like SELF, an object would
be created by cloning (copying) a prototype. In SELF, any object can be cloned.

1Smalltalk-80 is a trademark of ParcPlace Systems. In this paper, the term “Smalltalk” will be used
to refer to the Smalltalk-80 programming language.

SELF: THE POWER OF SIMPLICITY 3

The remainder of the paper describes SELF in more detail, and concludes with
two examples. We use Smalltalk as our yardstick, as it is the most widely known
language in which everything is an object. Familiarity with Smalltalk will therefore
be helpful to the reader.

2 Prototypes: Blending Classes and Instances

In Smalltalk, unlike C++, Simula, Loops, or Ada, everything is an object and
every object contains a pointer to its class, an object that describes its format and
holds its behavior (see Figure 1.) In SELF too, everything is an object. But, instead
of a class pointer, a SELF object contains named slots which may store either state
or behavior. If an object receives a message and it has no matching slot, the search
continues via a parent pointer. This is how SELF implements inheritance. Inherit-
ance in SELF allows objects to share behavior, which in turn allows the
programmer to alter the behavior of many objects with a single change. For
instance, a point2 object would have slots for its non-shared characteristics: x and
y (see Figure 1). Its parent would be an object that held the behavior shared among
all points: +, –, etc.

2.1 Comparing Prototypes and Classes
One of SELF’s most interesting aspects is the way it combines inheritance, proto-

types, and object creation, eliminating the need for classes (see above table).
Simpler relationships. Prototypes can simplify the relationships between

objects. To visualize the way objects behave in a class-based language, one must
grasp two relationships: the “is a” relationship, that indicates that an object is an
instance of some class, and the “kind of” relationship, that indicates that an object’s
class is a subclass of some other object’s class. In a system such as SELF with
prototypes instead of classes, there is only one relationship, “inherits from,” that

2Throughout this paper we appeal to point objects in examples. A Smalltalk point represents a point
in two-dimensional Cartesian coordinates. It contains two instance variables: the x and y coordinates.

creation metaphor
initialization
one-of-a-kind
infinite regress

class–based systems

instance of
subclass of
build according to plan
executing a “plan”
need extra object for class
class of class of class of ...

SELF: no classes

inherits from

clone an object
cloning an example
no extra object needed
none required

inheritance relationships

4 UNGAR AND SMITH

(class)

(superclass)
(inst vars)
(methods)

(name) Point

class, x, y

how to

(class)

(superclass)
(inst vars)
(methods)

(name) Object
nil

(none)

(class)

(y)
(x) 3

5
7
9

+ add points

how toprint print objects

x
x:
y
y:

parent*
3
!

5
!

x
x:
y
y:

parent*
7
!

9
!

+
parent*

print

how to
add points

how to
print objects

SELF objectsSmalltalk

. . .

. . .

instances and classes

Figure 1. A comparison of Smalltalk instances and classes with SELF objects.
At the bottom of each figure are two point objects that have been created by a user program.

Each SELF point intrinsically describes
its own format, but appeals to another
object for any behavior that is shared
among points. In this example, the points
appeal to an object containing shared
behavior for points. That object in turn
appeals to another (on top) for behavior
that is shared by all objects. This “root”
object fully describes its own format and
behavior, so it has no parent.

Each Smalltalk point contains a class
pointer and x and y coordinates. The
class Point supplies both format (a list of
instance variables) and behavior infor-
mation (a collection of methods) for
points. Additional format and behavior
information is inherited from Object via
Point’s superclass link. Each of the two
classes in turn must appeal to other
classes (not shown) for their format and
behavior.

SELF: THE POWER OF SIMPLICITY 5

describes how objects share behavior and state. This structural simplification
makes it easier to understand the language and easier to formulate an inheritance
hierarchy.

A working system will provide the chance to discover whether class-like objects
would be so useful that programmers will create them without encouragement from
the language. The absence of the class-instance distinction may make it too hard to
understand which objects exist solely to provide shared information for other
objects. Perhaps SELF programmers will create entirely new organizational struc-
tures. In any case, SELF’s flexibility poses a challenge to the programming envi-
ronment; it will have to include navigational and descriptive aids.3

Creation by copying. Creating new objects from prototypes is accomplished by
a simple operation, copying, with a simple biological metaphor, cloning. Creating
new objects from classes is accomplished by instantiation, which includes the
interpretation of format information in a class (see Figure 2.) Instantiation is
similar to building a house from a plan. Copying appeals to us as a simpler meta-
phor than instantiation.

Examples of preexisting modules. Prototypes are more concrete than classes
because they are examples of objects rather than descriptions of format and initial-
ization. These examples may help users to reuse modules by making them easier to
understand. A prototype-based system allows the user to examine a typical repre-
sentative rather than requiring him to make sense out of its description.

Support for one-of-a-kind objects. SELF provides a framework that can easily
include one-of-a-kind objects with their own behavior. Since each object has
named slots, and slots can hold state or behavior, any object can have unique slots
or behavior (see Figure 3.) Class-based systems are designed for situations where
there are many objects with the same behavior. There is no linguistic support for an
object to possess its own unique behavior, and it is awkward to create a class that
is guaranteed to have only one instance. SELF suffers from neither of these disad-
vantages. Any object can be customized with its own behavior. A unique object can
hold the unique behavior, and a separate “instance” is not needed.

Elimination of meta-regress. No object in a class-based system can be self-
sufficient; another object (its class) is needed to express its structure and behavior.
This leads to a conceptually infinite meta-regress: a point is an instance of class
Point, which is an instance of metaclass Point, which is an instance of metameta-
class Point, ad infinitum. On the other hand, in prototype-based systems an object
can include its own behavior; no other object is needed to breathe life into it. Proto-
types eliminate meta-regress.

The discussion of prototypes in this paper naturally applies to them as realized in
SELF. Prototype-based systems without inheritance would have a problem: each
object would include all of its own behavior—just like the real world—and these

3See [19] for a description of the structures that have evolved since this was first written.

6 UNGAR AND SMITH

point
clone

(class)

(superclass)
(inst vars)
(methods)

(name) Point

class, x, y

how to

(class)

(inst vars)

(methods)

(superclass)
name,

new make objects

x
x:
y
y:

parent*
0
!

0
!

parent*

how to
clone objects

Creating a SELF object

. . .

. . .

Creating a Smalltalk object

. . .

superclass,
inst vars,
methods

(class)

(inst vars)

(methods)

(superclass)
name,

. . .

superclass,
inst vars,
methods

To create a new point in SELF, the clone
message is sent to the prototypical point.
The clone method copies its receiver.
Because the point slot resides in the root,
any object can create a point.

. . .

. . .

Figure 2. Object creation in Smalltalk and in SELF.

To create a new point in Smalltalk, the
new message is sent to the class Point.
The new method—found in Point’s
class’s superclass—uses information in
its receiver (Point) to define the size and
format of the new object.

SELF: THE POWER OF SIMPLICITY 7

(class)

(superclass)
(inst vars)
(methods)

(name) Object
nil

(none)
. . .

. . .

(class)

(superclass)
(inst vars)
(methods)

(name) False

(none)

. . .
True

(none)

. . .

(class)

Smalltalk

SELF

falsetrue

ifTrue: trueBlock
ifFalse: falseBlock
" trueBlock value

ifTrue: trueBlock
ifFalse: falseBlock
" falseBlock value

ifTrue: False:
parent*

. . .
parent*

. . .

. . .

ifTrue: False:
parent*

| :trueBlock. :falseBlock |
" trueBlock value

| :trueBlock. :falseBlock |
" falseBlock value

true false

Figure 3. In SELF, it is easier to define unique objects than in a class-based system like
Smalltalk. Consider the objects that represent the true and false boolean values. A system
needs only one instance of each object, but in Smalltalk, there must be a class for each. In
SELF, since any object can contain behavior, it is straightforward to create specialized ob-
jects for true and false.

8 UNGAR AND SMITH

systems would surrender one of the most pleasant differences between computers
and the real world, the ability to make sweeping changes by changing shared
behavior.

Once inheritance is introduced into the language, the natural tendency is to make
the prototype the same object that contains the behavior for that kind of object. For
instance, the behavior of all points could be changed by changing the behavior of
the prototypical point. Unfortunately, such a system must supply two ways to
create objects: one to make an object that is the offspring of a prototype, and
another to copy an object that is not a prototype. The ultimate result is that proto-
types would become special and not prototypical at all.

Our solution is to put the shared behavior for a family of objects in a separate
object that is the parent of all of them, even the prototype. That way the prototype
is absolutely identical to every other member of the family. The object containing
the shared behavior plays a role akin to a class, except that it contains no informa-
tion about representation; it merely holds some shared behavior. So to add some
behavior to all points in SELF, one would add that behavior to the parent of the
points.

3 Blending State and Behavior

In SELF, there is no direct way to access a variable; instead, objects send
messages to access data residing in named slots. So, to access its “x” value, a point
sends itself the “x” message. The message finds the “x” slot, and evaluates the
object found therein. Since the slot contains a number, the result of the evaluation
is just the number itself. In order to change contents of the “x” slot to, say, 17,
instead of performing an assignment like “x!17,” the point must send itself the
“x:” message with 17 as the argument. The point object must contain a slot named
“x:” containing the assignment primitive. Of course, all these messages sent to
“self” would make for verbose programs, so our syntax allows the “self” to be
elided. The result is that accessing state via messages in SELF becomes as easy to
write as accessing variables directly in Smalltalk; “x” accesses the slot by the same
name, and “x: 17” stores seventeen in the slot.

Accessing state via messages makes inheritance more powerful. Suppose we
wish to create a new kind of point, whose “x” coordinate is a random number
instead of a stored value. We copy the standard point, remove the “x:” slot (so that
“x” cannot be changed) and replace the contents of the “x” slot with the code to
generate a random number (see Figure 4.) If instead of modifying the “x” slot, we
had replaced the “x:” slot with a “halt” method, we would obtain a breakpoint on
write. Thus, SELF can express the idioms associated with active variables and
dæmons. Accessing state via messages also makes it easier to share state. To create
two points that share the same “x” coordinate, the “x” and “x:” slots can be put in
a separate object that is a parent of each of the two points (see Figure 4.)

SELF: THE POWER OF SIMPLICITY 9

Figure 4. Two examples of flexibility in SELF. On the left is a point whose x coordinate
is computed by a random number generator. Since all the code for point sends messages
to get the x value, the random x point can reuse all existing point code. On the right are
two points that share the same x variable.

x
y
x:
y:

parent*
3
5
!

!

print
parent*

print objects
. . .

+
parent*

add points

x

y

parent*
random
number

generator
0

y: !

print
parent*

print objects
. . .

+
parent*

add points

x
x:

parent*
7
!

y
y:

parent*
4
!

y
y:

parent*
2
!

Computing a value instead of storing it Shared state

In most object-oriented languages, accessing a variable is a different operation
than sending a message. This dilutes the message passing model of computation
with assignment and access. As a result, message passing becomes less powerful.
For instance, the inclusion of variables makes it harder for a specialization
(subclass) to replace a variable with a computed result, because there may be code
in a superclass that directly accesses the variable. Also, class-based languages
typically store the names and order of instance variables in an object’s class (as
shown in Figure 1). This further limits the power of inheritance; the specification
within a class unnecessarily restricts an instance’s format. Finally, variable access
requires scoping rules, yet a further complication. For instance, Smalltalk has five
kinds of variables: local variables (temporaries), instance variables, class variables,
pool variables, and global variables, whose scopes roughly correspond to rungs on
a ladder of instantiation.

10 UNGAR AND SMITH

4 Closures and Methods

The Lisp community has obtained excellent results with closures (or lambda-
expressions) as a basis for control structures [1, 17]. Experience with Smalltalk
blocks supports this; closures provide a powerful, yet easy-to-use metaphor for
users to exploit and define their own control structures. Furthermore, this ability is
crucial to any language that supports user-defined abstract data types. In SELF, a
closure is represented by an object containing an environment link and a method
named “value,” “value:,” “value:With:,” and so forth, depending on the number of
arguments.

Local variables. Methods require storage for local variables, and in SELF, their
slots fulfill this function. In Smalltalk, a method creates an activation record whose
initial contents are described by the method. For example, the number of temporary
variables listed in the method describes the number of fields set aside in the activa-
tion record to hold variables. This is similar to the way a class contains a structural
description used to instantiate its instances. But in SELF, objects that play the role
of methods are prototypes of activation records; they are copied and invoked to run
the subroutine. So, local variables are allocated by reserving slots for them in the
prototype activation record. One advantage is that the prototype’s slots may be
initialized to any value—they may even contain private methods and closures
(blocks).

Environment link. In general, a method must contain a link to its enclosing
closure or scope. This link is used to resolve references to variables not found in
the method itself. In SELF, instead of having separate scope information, a
method’s parent link performs this function. If a slot is not found in the current
scope, lookup proceeds to the next outer scope by following the parent link.

Some interesting mechanisms are needed to make the parent links handle lexical
scoping. First, the parent link must be set to the appropriate object. This is simple
for an ordinary object; the parent link is automatically set to its prototype’s parent,
as a result of cloning. For methods, the object created by the compiler serves as a
prototype activation, and when invoked, is cloned. The clone’s parent then is set to
the message’s receiver. In this fashion, the method’s scope is embedded in the
receiver’s. For SELF blocks, an environment link is set to the block’s enclosing
activation record when the block is created. Later, when the block is activated, its
method’s parent link is set from the block’s environment link.

Second, in order to allow the slots containing local variables to be accessed in the
same way as everything else, the implicit “self” operand must take on an unusual
meaning: start the message lookup with the current activation record, but set the
receiver of the message to be the same as the current receiver. In a way, this is the
opposite of the “super” construct in Smalltalk, which starts the lookup with the
receiver’s superclass (see Figure 5.)

SELF: THE POWER OF SIMPLICITY 11

x
y
x:
y:

parent*
3
5
!

!

how to print objects

Activation in SELF

clone
print

x
y
x:
y:

parent*
7
9
!

!

how to clone objects

arg
<code>

self*

+
parent*

arg
<code>

self*
nil

(clone x: x + arg x) y: y + arg y

shared behavior for all objects

shared behavior for points

a point another point

cloned activation
record

prototype activation
record

Figure 5. This figure shows what happens when the point (3, 5) is sent the “+” message
with argument (7, 9). Lookup for plus starts at (3, 5) and finds a matching slot in the object
holding shared behavior for points. Since the contents of the slot is a method object, it is
cloned, the clone’s argument slot is set to the argument of the message, and its parent is
set to the receiver. When the code for “+” executes, the lookup for x will find the receiver’s
x slot by following the inheritance chain from the current activation record. It will also find
the contents of the “arg” slot in the same way. It is this technique of having the lookup for
the implicit “self” receiver start at the current activation that allows local variables, in-
stance variables, and method lookup to be unified in SELF.

12 UNGAR AND SMITH

5 Speculation: Where is SELF Headed?

In designing SELF, we have been led to some rather strange recurring themes. We
present them here for the reader to ponder.

Behaviorism. In many object languages, objects are passive; an object is what it
is. In SELF, an object is what it does. Since variable access is the same as message
passing, ordinary passive objects can be regarded merely as methods that always
return themselves. For example, consider the number 17. In Smalltalk, the number
17 represents a particular (immutable) state. In SELF, the number 17 is just an
object that returns itself and behaves a certain way with respect to arithmetic. The
only way to know an object is by its actions.

Computation viewed as refinement. In Smalltalk, the number 17 is a number
with some particular state, and the state information is used by the arithmetic prim-
itives—addition, for example. In SELF, 17 can be viewed as a refinement of shared
behavior for numbers that responds to addition by returning 17 more than its argu-
ment. Since in SELF, an activation record’s parent is set to the receiver of the
message, method activation can be viewed as the creation of a short-lived refine-
ment of the receiver. Likewise, block (closure) activation can be viewed as the
creation of a refinement of the activation record for the enclosing context scope.

In our examples, we render the shared behavior object for points as an ordinary
passive object. Another twist would be to build class-like objects out of methods.
In SELF, the shared behavior object for points could be a method with code that
simply returned a clone of the prototypical point. This method could then be
installed in the “point” slot of the root object. One object would then be serving two
roles: its code would create new points, and its slots (locals) would hold the shared
behavior for points. At this writing, we do not believe that this is the best way to
construct a system, but the use of methods to hold shared behavior for a group of
objects is an example of the flexibility afforded by SELF.

Parents viewed as shared parts. Finally, one can view the parents of an object
as shared parts of the object. From this perspective, a SELF point contains a private
part with x and y slots, a part shared with other points containing +, -, etc. slots, and
a part shared with all other objects containing behavior common to all objects.
Viewing parents as shared parts broadens the applicability of inheritance.

6 Syntax

In this section we outline the syntax for a textual representation of SELF objects.
Where possible, we have followed Smalltalk syntax to avoid confusion. We have
added slot list syntax for creating objects inline. In general, SELF objects are
written enclosed in parentheses, and include a list of slots and, in the case of

SELF: THE POWER OF SIMPLICITY 13

methods, also include code. Blocks are written as methods enclosed in square
brackets instead of parentheses.

The code follows Smalltalk syntax, with a few notable exceptions: The receiver
is omitted when it is “self.” The return value of a method is always the result of the
last expression. Keyword messages associate from right to left. Case is used to
make keyword message-sends easier to read: the first keyword must be lowercase,
and subsequent keywords in the same selector must be uppercase. These changes
reduce the number of parentheses and other lexical noise in SELF code.

The slot list syntax has little precedent in Smalltalk. The slot list, if present, must
be nestled in a pair of vertical bars. Each item in the slot list must be separated from
the next by a period. (A trailing period is optional.) Finally, there are several forms
for slots:

• A selector by itself denotes two slots: a slot initialized to nil, and a slot named
with a trailing colon initialized to the assignment primitive (denoted by !).
For example, the object
(| x. |)
contains two slots: one called x containing nil, and another one called x: con-
taining !. This has the same effect as declaring a Smalltalk variable.

• A selector followed by a left arrow (“<–”) and an expression also denotes two
slots: a slot initialized to the value of the expression, and a corresponding
assignment slot. The effect is similar to an initialized variable. For example,
the method object
(

| tally!"# 0 |
 10 do: [tally: tally + random].
tally

)
(where “random” is a slot in the root that returns random numbers) returns the
sum of 10 random numbers. It contains a slot named “tally” initialized to zero,
and a slot named “tally:” containing the assignment primitive.

• A selector followed by an equals sign (“=”) and an expression denotes only one
slot, initialized to the value of the expression. The effect is identical to that of
the left-arrow form, except that the variable is read-only (no assignment slot is
created).

• Finally, a unary selector (i.e. identifier) preceded by a colon defines a slot
bound to the corresponding argument of the message. For example: “[| :a. :b |
a < b]” defines a block with two arguments, “a” and “b.”

14 UNGAR AND SMITH

The arguments for a method may also be moved into the selector as in Small-
talk:
display:At: = (

| :aForm. :aPoint |
(bitblt copy

destination: self At: aPoint Source: aForm)
copybits)

and
display: aForm At: aPoint = (

(bitblt copy
destination: self At: aPoint Source: aForm)
copybits)

are equivalent.

7 Examples

The first example shows a simple point. It assumes that the system is organized
into two kinds of objects: objects that hold shared traits, and prototypes. (In the
examples, the primitive _AddSlotsIfAbsent: adds slots to its receiver if the slots do
not already exist; the primitive _Define: redefines its receiver in place.)

_AddSlotsIfAbsent: (|
traits = (). Create an object for holding traits objects.
prototypes* = (). Create an object for holding prototypical

|) objects. It is a parent to make it easier
to refer to its contents.

traits _AddSlotsIfAbsent: (| clonable = () |)
traits clonable _Define: (| Define object holding traits of clonable objects.

copy = (_Clone). Define a copy method that invokes the
|) “clone” primitive.

traits _AddSlotsIfAbsent: (| point = () |)
traits point _Define: (| Define the object holding traits of points.

parent* = traits clonable. Inherit copying methods.
printString = (Define a method to construct a printable string.

x printString, ‘@’, Concatenate the strings for x and y,
y printString). separated by an ‘@’.

+ aPoint = (Define method for addition.
 | newPoint | Uses a local slot (newPoint).
newPoint: copy. Copy the receiver to serve as the result.

SELF: THE POWER OF SIMPLICITY 15

newPoint x: x + aPoint x. Set its x coordinate.
newPoint y: y + aPoint y. Set its y coordinate.
newPoint). Return the new point.

– aPoint = (Define subtraction, exploiting the fact that
(copy x: x – aPoint x) assignment (e.g. x:, y:) returns self.

y: y – aPoint y). (By convention, methods return self if at
|) all possible.)

prototypes _AddSlotsIfAbsent: (| point = () |)
point _Define: (| Define the prototypical point.

parent* = traits point. Inherit shared traits via a read-only parent slot.
x <– 0. Define read/write slots x and y initialized to 0.
y <– 0. (I.e., also define x: and y: with the assignment

|) primitive.)

traits integer _AddSlots: (| Add behavior for creating points to existing
@ y = ((point copy x: self) y: y). integer traits object.

|)

The following example is more interesting; it shows how to exploit SELF’s
unique features to build a data structure that holds a binary tree of objects.

traits _AddSlotsIfAbsent: (| emptyTree = () |)
traits emptyTree _Define: (| Define an object holding emptyTree traits.

parent* = traits clonable. Inherit copying methods.
includes: x = (false). Empty trees never include anything
insert: x = (Create a new treeNode, set its contents,

parent: treeNode copy and switch my parents. Uses dynamic
contents: x). inheritance.

size = 0.
do: aBlock = (self).

|)

prototypes _AddSlotsIfAbsent: (| tree = () |)
tree _Define: (| Define the prototypical tree as empty. It has

parent* <– traits emptyTree. an assignable parent slot set to
|) traits emptyTree.

traits _AddSlotsIfAbsent: (| treeNode = () |)
traits treeNode _Define: (| Define the object holding tree node traits.

parent* = traits clonable. Inherit copying methods.

16 UNGAR AND SMITH

includes: x = (| subT | This method uses a local variable, subT.
x = contents ifTrue: [^true]. Send contents to self and compare. Uses SELF’s

ability to inherit state (the contents slot).
Return true if found here.

subT: x < contents Select subtree.
ifTrue: [left] False: [right].

subT includes: x). Recurse and return result of recursive call.
insert: x = (| subT | Insert x into the receiver; same recursion as

x = contents ifTrue: [^self]. includes:.
subT: x < contents

ifTrue: [left] False: [right].
subT insert: x.
self).

size = (left size + 1 + right size).
do: aBlock = (

left do: aBlock.
aBlock value: contents.
right do: aBlock.
self).

copy = (Copy subtrees when copying a tree node. This
(resend.copy left: left copy) provides new empty trees when a tree node

right: right copy). is copied for insertion into a tree.
|)

prototypes _AddSlotsIfAbsent: (| treeNode = () |)
treeNode _Define: (| Define the prototypical tree node.

parent* = traits treeNode. A constant parent slot.
left <– tree. Assignable subtree slots, initialized to the
right <– tree. prototypical (empty) tree.
contents. Assignable slot for contents.

|)

8 Related Work

We would like to express our deep appreciation to the past and present members
of the System Concepts Laboratory at Xerox PARC for blazing the trail with Small-
talk [6]. The way SELF accesses state via message passing owes much to conver-
sations with Peter Deutsch, and is reminiscent of an earlier unpublished language
of his called “O.” Some Smalltalk programmers have already adopted this style of
variable accessing [11]. Trellis/Owl is an independently designed object-oriented
language that includes syntactic sugar to make message invocation look like

SELF: THE POWER OF SIMPLICITY 17

element access and assignment [12]. This is the reverse of our approach. We stuck
with message-passing syntax in SELF to emphasize behavioral connotations.
Strobe is a frame-based language for AI that also mixes data and behavior in slots
[16]. Loops, an extension of InterLisp with objects, also includes active variables
[18].

We would like to thank Henry Lieberman for calling our attention to prototypes
[10]. Unlike SELF, Lieberman’s prototypes include shared information as well. His
clones inherit from their prototype, adding private slots on-demand. Although this
approach obviates the need for traits objects, its prototypes are heavier-weight
objects than SELF’s. Exemplars is the name given to prototypes in a project that
added a prototype-based object hierarchy to Smalltalk [8]. Like our design for
SELF, objects are created by cloning exemplars, and multiple representations of the
same data type are permitted. Unlike SELF, this system also includes classes as an
abstract type hierarchy, and two forms of multiple inheritance. One interesting
contribution is the exemplar system’s support for or-inheritance. SELF seems to be
more unorthodox than exemplars in two respects: it eliminates variable accessing
from the language, and it unifies objects, classes, and methods.

The Alternate Reality Kit [14, 15] is a direct manipulation simulation environ-
ment based on prototypes and active objects, and it has given us much insight into
the world of prototypes. Alan Borning’s experience with prototype-based environ-
ments, especially ThingLab [2, 3, 4] made him a wonderful sounding board when
we were struggling to grasp the implications of prototypes.

The DeltaTalk proposal [5] included several ideas for merging Smalltalk
methods and blocks, which helped us to understand the problems in this area. The
Actors [7] system has active objects, but these are processes, unlike SELF’s proce-
dural model. Actors also rejects classes, replacing inheritance with delegation.

Oaklisp [9] is a version of Scheme with message passing at the bottom. However,
Oaklisp is class-based and maintains the inheritance hierarchy separately from the
lexical nesting; it does not seem to integrate lambdas and objects.

9 Conclusions

SELF offers a new paradigm for object-oriented languages that combines both
simplicity and expressiveness. Its simplicity arises from realizing that classes and
variables are not needed. Their elimination banishes the metaclass regress, dispels
the illusory distinction between instantiation and subclassing, and allows for the
blurring of the differences between objects, procedures, and closures. Reducing the
number of basic concepts in a language can make the language easier to explain,
understand, and use. However, there is a tension between making the language
simpler and making the organization of a system manifest. As the variety of
constructs decreases, so does the variety of linguistic clues to a system’s structure.

18 UNGAR AND SMITH

Making SELF simpler made it powerful. SELF can express idioms from tradi-
tional object-oriented languages such as classes and instances, but can go beyond
them to express one-of-a-kind objects, active values, inline objects and classes, and
overriding instance variables. We believe that contemplation of SELF provides
insights into the nature of object-oriented computation.

10 Acknowledgments

We would like to thank Daniel Weise and Mark Miller for listening patiently and
tutoring us on Scheme. Craig Chambers, Martin Rinard, and Elgin Lee have helped
distill and refine the language. Finally, we would like to thank all the readers and
reviewers for many helpful comments and criticisms, especially Dave Robson,
who helped separate the wheat from the chaff.

References

1. Abelson, H., Sussman, G. J., and Sussman, J. Structure and Interpretation of
Computer Programs, MIT Press (1984).

2. Borning, A. H. ThingLab—A Constraint-Oriented Simulation Laboratory.
Ph.D. dissertation, Stanford University (1979).

3. Borning, A. H. The Programming Language Aspects of ThingLab, A Con-
straint-Oriented Simulation Laboratory. In ACM Transactions on Program-
ming Languages and Systems, 3, 4 (1981) 353-387.

4. Borning, A. H. Classes Versus Prototypes in Object-Oriented Languages. In
Proceedings of the ACM/IEEE Fall Joint Computer Conference (1986) 36-
40.

5. Borning, A., and O’Shea, T. DeltaTalk: An Empirically and Aesthetically
Motivated Simplification of the Smalltalk-80™ Language. Unpublished
manuscript (1986).

6. Goldberg, A., and Robson, D. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley, Reading, MA (1983).

7. Hewitt, C., and Agha, G. ACTORS: A Conceptual Foundation For Concur-
rent Object-Oriented Programming. Unpublished draft, MIT Artificial Intel-
ligence Laboratory (1987).

8. LaLonde, W. R., Thomas, D. A., and Pugh, J. R. An Exemplar Based Small-
talk. In OOPSLA ’86 Conference Proceedings. Published as SIGPLAN Notic-
es, 21, 11 (1986) 322-330.

SELF: THE POWER OF SIMPLICITY 19

9. Lang, K. J., and Pearlmutter, B. A. Oaklisp: An Object-Oriented Scheme with
First Class Types. In OOPSLA ’86 Conference Proceedings. Published as
SIGPLAN Notices, 21, 11 (1986) 30-37.

10. Lieberman, H. Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems. In OOPSLA ’86 Conference Proceedings. Pub-
lished as SIGPLAN Notices, 21, 11 (1986) 214-223.

11. Rochat, R. In Search of Good Smalltalk Programming Style. Technical Re-
port No. CR-86-19, Computer Research Laboratory, Tektronix Laboratories,
Beaverton, OR (1986).

12. Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An Introduc-
tion to Trellis/Owl. In OOPSLA ’86 Conference Proceedings. Published as
SIGPLAN Notices, 21, 11 (1986) 9-16.

13. Sheil, B. Power Tools for Programmers. Datamation, 29, 2 (1983) 131-144.
14. Smith, R. B. The Alternate Reality Kit: An Animated Environment for Cre-

ating Interactive Simulations. In Proceedings of 1986 IEEE Computer Soci-
ety Workshop on Visual Languages (1986) 99-106.

15. Smith, R. B. Experiences with the Alternate Reality Kit: An Example of the
Tension Between Literalism and Magic. In Proceedings of the CHI+GI ’87
Conference (1987) 61-67.

16. Smith, R. G. Strobe: Support for Structured Object Knowledge Representa-
tion. In Proceedings of the 1983 International Joint Conference on Artificial
Intelligence (1983) 855-858.

17. Steele, G. L., Jr. Lambda, the Ultimate Imperative. AI Memo 353, MIT Arti-
ficial Intelligence Laboratory (1976).

18. Stefik, M., Bobrow, D., and Kahn, K. Integrating Access-Oriented Program-
ming into a Multiprogramming Environment. IEEE Software Magazine, 3, 1
(1986) 10-18.

19. Ungar, D., Chambers, C., Chang, B., and Hölzle, U. Organizing Programs
Without Classes. To be published in Lisp and Symbolic Computation, 4, 3
(1991).

20. Ungar, D., and Smith, R. B. SELF: The Power of Simplicity. In OOPSLA ’87
Conference Proceedings. Published as SIGPLAN Notices, 22, 12 (1987) 227-
241.

20

