
INTRO. TO
OBJECT-ORIENTED

PROGRAMMING IN PYTHON
Curt Clifton

Rose-Hulman Institute of Technology

TODAY’S PLAN

Some notes on scope

Brief introduction to syntax for objects in Python

OO Exercise

Remember:

Milestone 1 due tomorrow night

Project Friday tomorrow, no class

PREPARATION

In Eclipse, check out
the PythonOOIntro
project from your
individual repository
for the course

Open the file scope.py

http://icanhascheezburger.com/category/loldog/page/3/

SCOPE IN PYTHON

See code and comments in scope.py to answer quiz
questions 1 and 2

Q1,2

BUT I WANT TO ASSIGN TO
THE TOP-LEVEL VARIABLE!

You can prevent Python from creating a shadowing,
local variable using global

Example: def fn3():
 global x
 print "x in fn3:", x
 x = 15
 print "x in fn3:", x

Q3

MUTATION != ASSIGNMENT

Look at fn4 and quiz
question 4

Q4

IMPORT AND ALIASING

See scope_user.py

Quiz questions 5 and 6

Q5,6

BUILT-IN SCOPE

Python doesn’t keep you from assigning to built-in
names

Try this:

Add this code to scope.py:

Run scope.py

Add print str(1) to scope_user.py and run it

Definition of str in scope.py shadows the built-in!

print str(1)
def str(n):
 return 'boo'
print str(1)

OBJECTS IN PYTHON

Class definitions

Class attributes

Instantiation

“Fields” and “methods”

Code for coming
examples is in
class_examples.py

CLASS DEFINITIONS

class ClassName:
 """Doc string."""
 # 0 or more additional statements

CLASS ATTRIBUTES

class Attrib:
 """Example of class attributes."""
 x, y = 2, 13

print "Attrib:", Attrib.x, Attrib.y

FUNCTIONS AS
CLASS ATTRIBUTES

class AttribWithFunc:
 """Example adding fn attribute."""
 def fact(n):
 result = 1
 for i in xrange(1, n+1):
 result *= i
 return result

print "fact:", AttribWithFunc.fact
print "Calling fact:", AttribWithFunc.fact(5)

Error!
Q7, not Q8

CLASS INSTANTIATION

class MakeMe:
 """Example for instantiation."""
 def __init__(self, x):
 self._x = x

one = MakeMe(1)
two = MakeMe(2)
print "One-two punch:", one._x, two._x

FIELDS AND METHODS

Fields

Like local variables,
they’re created by
assignment

Methods

Functions that
“belong to” objects

All class functions
are methods!

class CountDown:
 def __init__(self, n):
 self._n = n
 def tick(self):
 self._n -= 1
 if self._n <= 0:
 print 'BOOM!'

counter = CountDown(5)
for i in xrange(8):
 counter.tick()

Q8

EXERCISE

In the file television.py…

Create a class that
models a television,
including:

On/off status

Current channel

Volume setting

Mute setting

Include methods for
adjusting all the settings

Notes:

Volume should return
to previous value
when unmuting

TV should be
unmuted when
turned on

Commit your work to SVN when done!

