
HASKELL STYLE
Curt Clifton

Rose-Hulman Institute of Technology

SVN Update HaskellInClass folder,
open basics.hs and style.hs

THE GOLDEN RULE OF
HASKELL INDENTATION

Code which is part of some
expression should be indented

farther in than the line containing
the beginning of that expression

Live it.

Learn it.

Pass i
t on.

BINARY TREE DATATYPE

What do we need to store for a binary tree node?

Nodes contain other nodes

Need recursive data type:

data BinaryTree a =
 ExtNode
 | IntNode a (BinaryTree a) (BinaryTree a)
 deriving Show

Q1

RECORDS

Define custom data
types with named
“fields”

Automatically create
accessor functions

type CustomerID = Int
type Address = [String]

data Customer = Customer {
 customerId :: CustomerID,
 customerName :: String,
 customerAddress:: Address
 } deriving (Show)

CONTROL FLOW
EXPRESSIONS

case expression:
eo xs =
 case xs of
 [] -> []
 (x:[]) -> [x]
 (x':_:xs') -> x' : eo xs'

Cases must have same
type

Uses pattern matching

guards:
data Pair a b = Pair a b

twins::Eq a => Pair a a -> String
twins (Pair x y)
 | x == y = “yep”
 | otherwise = “nope”

Similar to cases, but use
Bool values to select

Q2,3

Matches a pair
and binds x and y

BINDING EXPRESSIONS

let expressions define
local names for values

Not “variables”

Can’t mutate them

where expressions give
supporting definitions
at the end of a
function

fib n = fst (ffp n)
 where
 ffp 0 = (0, 0)
 ffp 1 = (1, 0)
 ffp n =
 let (nm1, nm2) = ffp (n-1)
 in (nm1 + nm2, nm1)

Example

Q4

INFIX OPERATORS

Surrounding binary function names with `backticks`
lets us use them as infix operators:
> 4 `div` 2
> "foo" `isPrefixOf` "foolish"

Surround infix operators with parentheses lets us
treat them like function names:
(<-*) :: BinaryTree a -> BinaryTree a -> BinaryTree a
_ <-* ExtNode = error "Can't add a left child to ext. node"
t <-* (IntNode x _ right) = IntNode x t right

Q5

LOADS OF LIST FUNCTIONS

length (++) take elem

null concat drop notElem

head reverse splitAt filter

tail and takeWhile isPrefixOf

last or dropWhile isInfixOf

init all span isSuffixOf

lines/unlines any break zip

See http://www.haskell.org/ghc/docs/latest/html/libraries/

OPEN SOURCE

Later we’ll dress
up like Big Oil and
jump Ralph Nader

EXAMPLE: ADLER-32

Concatenates two 16-bit checksums

First is the sum of all the input bytes, plus 1

Second is the running total of the intermediate
values of the first checksum

Both are modulo 65521

LEFT FOLD

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl op acc (x:xs) = foldl op (op acc x) xs
foldl _ acc _ = acc

operation accumulator

list to process

Q6

ADLER-32 WITH FOLDL

adler32_v3 :: String -> Int
adler32_v3 xs = let (chSum1,chSum2) = foldl procByte (1,0) xs
 in (chSum2 `shiftL` 16) .|. chSum1
 where procByte (chSum1,chSum2) x =
 let chSum1' = (chSum1 + (ord x .&. 0xff))
 in (chSum1' `mod` base, (chSum1' + chSum2) `mod` base)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl op acc (x:xs) = foldl op (op acc x) xs
foldl _ acc _ = acc

Q7

RIGHT FOLD

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op acc (x:xs) = op x (foldr op acc xs)
foldr _ acc [] = acc

Input: 1 : (2 : (3 : []))
Result: 1 + (2 + (3 + 0))

Consider: foldr (+) 0 [1..3]

THE POWER OF FOLDR

-- filter using foldr
myFilter :: (c -> Bool) -> [c] -> [c]
myFilter pred xs = foldr op [] xs
 where op x acc | pred x = x : acc
 | otherwise = acc

-- map using foldr
myMap :: (c -> d) -> [c] -> [d]
myMap f xs = foldr op [] xs
 where op x acc = (f x) : acc

-- append using foldr
append :: [c] -> [c] -> [c]
append xs ys = foldr (:) ys xs

Try to match
types here to
types in foldr’s

signature

SPACE LEAKS

foldl generates big thunks

take lots of space to store and evaluate

can use foldl’ for strict (non-lazy) version

foldr may generate big thunks…

…but most applications don’t if they leave right-
side unchanged or ignore it

Q9

