
HASKELL BASICS
AND TYPES

Curt Clifton
Rose-Hulman Institute of Technology

Check out HaskellInClass from SVN

MORE BASICS

HASKELL ERROR MESSAGES

Could they be more cryptic?

Example: haar xs = haarLevelN (logBase 2 (length xs)) xs

 No instance for (Floating Int)
 arising from a use of `logBase' at functions.hs:31:22-42
 Possible fix: add an instance declaration for (Floating Int)
 In the first argument of `haarLevelN', namely
 `(logBase 2 (length xs))'
 In the expression: haarLevelN (logBase 2 (length xs)) xs
 In the definition of `haar':
 haar xs = haarLevelN (logBase 2 (length xs)) xs

HASKELL ERROR MESSAGES

:type logBase → logBase :: (Floating a) => a -> a -> a

Read: “given that a is a Floating point type, then
logBase is a function that takes two arguments of type
a and returns a value of type a”

Learning to read Haskell errors will take time

Solution to the current problem:
haar xs = haarLevelN (logBase 2 (fromIntegral (length xs))) xs

HASKELL IS:
LAZY

No computation takes place unless it is forced to
when the result is used

Let’s us make infinite lists!

Example: makeList = 1: makeList

Useful function from the Prelude: take n xs

Try writing: upFrom n

Example: upFrom 5 yields [5,6,7,8,…]

Q1,2

HASKELL IS:
CASE SENSITIVE

Functions must start with lower case

Types must start with upper case

More info. on types coming…

Q3

HASKELL IS:
PURELY FUNCTIONAL

Given the same arguments, a function in Haskell
always produces the same results

Sometimes referred to as referential transparency

This allows automatic memoization

Storing the results of previously evaluated functions

Mostly? Impurity needed for I/O and persistence

Mostl
y

HASKELL IS:
STRONGLY, STATICALLY TYPED

All types must be given or inferable (guess-able) at
“compile” time

Type inference: known (or inferred) types of functions
and arguments are used to infer types of other
arguments and functions

Try this:
 :t 11 + 31

 :t 11 + 31::Int

 :t (+)

Q4

‘IF’ IS AN EXPRESSION

myDrop n xs =
if n <= 0 || null xs

 then xs

 else myDrop (n - 1) (tail xs)

Can’t have a one-legged if in Haskell. Why not?

Q5

FUN WITH LISTS

What is the type of map, filter, foldr, foldl, zip, zipWith?

Try:

Add import List to top of your basics.hs file

Reload, then enter

:browse List

:info filter

Recall: [1..10] yields [1,2,3,4,5,6,7,8,9,10]

Q6,7
Also see http:// www.haskell.org / ghc / docs / latest / html / libraries /

LAZY FIB

fastFib n = fibList !! n

 where fibList = 0 : 1 : zipWith (+) fibList (tail fibList)

Gives the nth
element of fibList

Parentheses turn
infix operator into

a function

TYPES

DECLARING TYPES OF
FUNCTIONS

We can declare specific types for functions:

upFrom :: (Num a) => a -> [a]

Why useful?

Helpful hint for learning types:

Make ghci display the type of each result by
entering: :set +t

Add it to ghci.conf if you want

TYPE SYNONYMS

Type synonyms let us give additional names to
existing types → improves readability

type BookID = Int
type Title = String
type Author = String

DECLARING CUSTOM
DATA TYPES

data BookInfo = Book BookID Title [Author]

keyword

custom
type name

constructor
definition

Try: :t Book
:t Book 123 “Little Schemer” [“Friedman”, “Felleisen”]

CUSTOM DATA TYPES

Use constructors to
make values with the
custom type

Can make custom
types instances of type
classes

Can pattern match
against the types

>>> Book 123 "ls" ["f","f"]

data BookInfo = Book …
 deriving (Show)

title (Book _ t _) = t
firstAuth (Book _ _ (x:_)) = x

POLYMORPHIC CUSTOM
DATA TYPES

data Pair a b = Pair a b

keyword

custom
type name

type
parameters

constructor
definition*Main> :t Pair

Pair :: a -> b -> Pair a b
*Main> :t Pair 'c' "Saw"
Pair 'c' "Saw" :: Pair Char [Char]
*Main> :t Pair 1 'c'
Pair 2 'c' :: (Num t) => Pair t Char

type name and constructor
name can be the same

CONSIDER…

Consider:
findElement :: (a -> Bool) -> [a] -> a
findElement p (x:xs) =
 if p x
 then x
 else findElement p xs

What should we do if we don’t find a match?

MULTIPLE CONSTRUCTORS
AND THE MAYBE TYPE

The Haskell Prelude defines a custom type:
data Maybe a = Nothing
 | Just a

Example:
findElement2 :: (a -> Bool) -> [a] -> Maybe a
findElement2 _ [] = Nothing
findElement2 p (x:xs) =
 if p x
 then Just x
 else findElement2 p xs

Q8

