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Stack Programming Basics

Arguments are pushed onto the stack
implicitly

Stack is used to pass arguments and results
around

Operations modify the stack
— Stack effects describe the changes that occur

notation Postfix !



Concatenative Programming Basics

* Everything is a function

e Juxtaposition defines function composition
ab=a-°b
« load-image process-image display-image



Getting Started with Factor

* Functions in Factor are called words

— Typically very short and concise

 Modules in Factor are called vocabularies
— Only used for namespacing and organization
— Think Java packages

e \Words are defined from other words

— primitives = base case
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3.

"hello world" .

67*

3+

drop
10sg5-.

Examples
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Anatomy of a Word

colon begins definition of a definition (a series of concatenated

word words)

square ( X -- x ) dup * ;

semicolon ends definition of a word

name of the word stack effect declaration




Stack Effect Declarations

* Exactly what it sounds like !
* Example !
—swap ( Xy --y X))

- D C
C —  swap —

B

A

B
A

STACK BEFORE STACK AFTER

http://elasticdog.com/2008/12/beginning-factor-shufflers-and-combinators/
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Quotations

Quotations are bits of code pushed onto the
stack for delayed execution

Like LISP/Scheme quotations!
Form: [ code later to run ]
You can nest quotations too
Useful for higher-order words

Code as data! You can build up quotations
dynamically (again like LISP)



Combinators

* A word that takes code as input

 Examples (top of the stack is on the right):
3 5[ 1+ ]dip
dip applies a quotation to the second thing on the stack, ignoring the top

{1233} [ sum ] [ length ] bi /
bi applies two quotations to the same value and places both results on
the stack. Here we use it for a mean operation. >:[

310 < [ “Math OK” print ] [ “Math FUBAR” print ] if

if takes a boolean, a quotation for the true case, and a quotation for the
false case.



