FACTOR

A PRACTICAL STACK LANGUAGE

Kenny Gao, Mike Lester, Eric Reed

I 4~ FACTOR

"RACTICAL 5T LAMNGUAGE
| 2% A PRACTICA ACK LAMGUA

Based on Forth (Team “May the Forth Be With
You”)

Created in 2003 by Stava-Pestoev a genius
Stack-based
Concatenative

Currently at version 0.94 (and in constant
development)

Ql

Stack Programming Basics

Arguments are pushed onto the stack
implicitly

Stack is used to pass arguments and results
around

Operations modify the stack
— Stack effects describe the changes that occur

notation Postfix !

Concatenative Programming Basics

* Everything is a function

e Juxtaposition defines function composition
ab=a-°b
« load-image process-image display-image

Getting Started with Factor

* Functions in Factor are called words

— Typically very short and concise

 Modules in Factor are called vocabularies
— Only used for namespacing and organization
— Think Java packages

e \Words are defined from other words

— primitives = base case

Q2

3.

"hello world" .

67*

3+

drop
10sg5-.

Examples

Q3

Anatomy of a Word

colon begins definition of a definition (a series of concatenated

word words)

square (X -- x) dup * ;

semicolon ends definition of a word

name of the word stack effect declaration

Stack Effect Declarations

* Exactly what it sounds like !
* Example !
—swap (Xy --y X))

- D C
C — swap —

B

A

B
A

STACK BEFORE STACK AFTER

http://elasticdog.com/2008/12/beginning-factor-shufflers-and-combinators/

Q4,5

Quotations

Quotations are bits of code pushed onto the
stack for delayed execution

Like LISP/Scheme quotations!
Form: [code later to run]
You can nest quotations too
Useful for higher-order words

Code as data! You can build up quotations
dynamically (again like LISP)

Combinators

* A word that takes code as input

 Examples (top of the stack is on the right):
3 5[1+]dip
dip applies a quotation to the second thing on the stack, ignoring the top

{1233} [sum] [length] bi /
bi applies two quotations to the same value and places both results on
the stack. Here we use it for a mean operation. >:[

310 < [“Math OK” print] [“Math FUBAR” print] if

if takes a boolean, a quotation for the true case, and a quotation for the
false case.

