HASKELL BASICS
AND TYPES

Curt Clifton
Rose-Hulman Institute of Technology

Check out HaskeliBasics from SVN

MORE BASICS

HASKELL IS:

® No computation takes place unless it is forced to
when the result is used

® Let’s us make infinite lists!

® Example: makelList = |: makeList
® Useful function from the Prelude: take n xs
® Try writing: upFrom n

® Example: upFrom 5 yields [5,6,7.,8,...]

Ql,2

HASKELL IS:

B S SR

® Functions must start with lower case
® Types must start with upper case

® More info. on types coming...

Q3

HASKELL IS:

N
o*“PURELY FUNCTIONAL

W

@ Given the same arguments, a function in Haskell
always produces the same results

® Sometimes referred to as referential transparency
® This allows automatic memoization
® Storing the results of previously evaluated functions

® Mostly? Impurity needed for I/O and persistence

HASKELL IS:

STRONGLY, STATICALLY TYPED |}

® All types must be given or inferable (guess-able) at
“compile” time

® Type inference: known (or inferred) types of functions
and arguments are used to infer types of other
arguments and functions

® Trythissgt L+ 3]
Tl 3t

t(+)

Q4

IF IS AN EXPRESSION

® myDrop n xs = if n <= 0 || null xs
then xs
else myDrop (n - 1) (tail xs)

® Can’t have a one-legged if in Haskell. Why not!

Q5

FUN WITH LISTS

® What is the type of map, filter, foldr, foldl, zip, zipWith!?
® Try:
® Add import List to top of your basics.hs file
® Reload, then enter
® :browse List
® :info filter
® Recall:[/..10] yields [1,2,3,4,5,6,7,8,9,10]

Also see http:// www.haskell.org | ghc / docs / latest / html / libraries /

Q6

W.VAGI-

Gives the nt"
element of fibList

® fastFib n = fibList !! n
where fibList = 0 : | : zipWith (+) fibList (tail fibList)

Parentheses turn

infix operator into
a function

MACGYVER GETS LAZY

NO ENTRY

\"
| 0

ANY IDEAS?

I CAN USE THE TRIGGER
MECHANISM OF THIS GUN
TO IGNITE A SMALL EXPLOSIVE

CHARGE, PROPELLING A METAL

SLWUG INTO THE GUARD'S HEAD.

Ry

y—

http://xkcd.com/444/ §

At the time of this writing, Wikipedia has a wonderful

article titled 'List of problems solved by MacGyver'.

READING HASKELL TYPES

® :type logBase — logBase :: (Floating a) => a -> a -> a

® Read:“given that a is a Floating point type, then
logBase is a function that takes two arguments of type
a and returns a value of type a”

DECLARING TYPES OF

DRI Se L

® We can declare specific types for functions:
® upFrom :: (Num a) => a -> [a]

®* Why useful?

@ Helpful hint for learning types:

® Make ghci display the type of each result by
entering: :set +t

® Add it to ghci.conf if you want

Q7

TYPE SYNONYMS

® Type synonyms let us give additional names to
existing types — improves readability

® type BookID = Int
type Title = String
type Author = String

LR

data Bookinfo = Book BookID Title [Author]

constructor @ types of constructor
ARG definition parameters

Try: :t Book
it Book 123 “Little Schemer” [“Friedman”, “Felleisen”’]

CUSTOM DATA TYPES

® Use constructors to
make values with the >>>Bo0iC] 25 s o, el

custom type

® Can make custom data BooklInfo = Book ...
types instances of type deriving (Show)
classes

® Can pattern match title (Bookt _) =t

against the types firstAuth (Book _ _ (x:_)) = x

POLYMORPHIC CUSTOM

a4

type

@ parameters

data Paira b =Pairab
constructor
*Main> :t Pair type hame

Pair ::a-> b -> Pair a b
type name and constructor

*Main> :t Pair 'c' "Saw"

Pair 'c' "Saw" :: Pair Char [Char]
*Main> :t Pair | 'c

Pair 2 'c' :: (Num t) => Pair t Char

nhame can be the same

CONSIDER...

® Consider:
findElement :: (a -> Bool) -> [a] -> a
findElement p (x:xs) =
if p x
then x
else findElement p xs

® What should we do if we don’t find a match?

MULTIPLE CONSTRUCTORS

i A SR o R

® The Haskell Prelude defines a custom type:

® data Maybe a = Nothing
[Just a

® Example:

s findElement?2 :: (a -> Bool) -> [a] -> Maybe a
findElement?2 _ [] = Nothing
findElement2 p (x:xs) =
if p x
then Just x
else findElement2 p xs

Q8

