
ERLANG CONCURRENCY
Curt Clifton

Rose-Hulman Institute of Technology

SVN Update ErlangInClass

A deep understanding
of concurrency is

hardwired into our
brains.

The world is parallel.

“We don’t have shared memory. I have my memory.
You have yours. We have two brains, one each. They are
not joined together. To change your memory, I send you
a message: I talk, or I wave my arms. You listen, you see,
and your memory changes; however, without asking you
a question or observing your response, I do not know

that you have received my messages.”

Erlang programs model how we
think and interact.

CONCURRENCY IN ERLANG

Erlang programs are made of lots of processes

Processes send messages to each other

Messages may or may not be received

Processes must explicitly communicate back if
acknowledgment is needed

Pairs of processes can be linked

ERLANG PROCESSES ARE
PART OF THE LANGUAGE

Creating and destroying processes is fast

Sending messages is fast

Processes behave the same on every OS

Can have huge numbers of processes

Processes do not share memory

Processes interact through message passing

Q1

FIRST SOME SHELL FOO

1> self().
<0.30.0>
2> receive foo -> true end.
control-G here
User switch command
 --> h
 c [nn] - connect to job
…
s - start local shell
…

 ? | h - this message
 --> j
 1* {shell,start,[init]}
 --> s
 --> j
 1 {shell,start,[init]}
 2* {shell,start,[]}
 --> c 2
Eshell V5.6.2 (abort with ^G)

1> self().
<0.35.0>
2> pid(0,30,0) ! foo.
foo
3> control-G here
User switch command
 --> j
 1 {shell,start,[init]}
 2* {shell,start,[]}
 --> c 1
enter here
3> control-G here
User switch command
 --> j
 1* {shell,start,[init]}
 2 {shell,start,[]}
 --> k 2
 --> j
 1* {shell,start,[init]}
 --> c 1

use original numbers here

JUST THREE PRIMITIVES FOR
CONTROLLING PROCESSES

Spawn – creates new processes

Send – sends a message to a running process

Receive – processes incoming messages

SPAWN

spawn(module, function, args)

Creates a new process and starts it
by evaluating the given function on the
given args list

Process runs until function terminates

Typically function is an infinite tail
recursion

spawn returns the “Process ID” of the
new process

Q2

SEND

Pid ! Message

Pid is a process ID

Message is any Erlang value

Message sending is asynchronous

Sender continues immediately to next expression

“Non-blocking”

Result of Pid ! Msg is Msg,
so you can chain:
PidA ! PidB ! Msg.

Q3

RECEIVE

Syntax: receive
 MsgPattern1 [when Guard1] -> ExpSeq1;
 MsgPattern2 [when Guard2] -> ExpSeq2;
 …
 end

Incoming messages are pattern matched

Match found, run expression sequence

No match found, store message for later processing
and wait for next incoming message

Message receive is blocking

Q4

RECORDS IN ERLANG

-record(stu, {name, year = 1}).

S1 = #stu{name = “Jerry”}.
#stu{name = “Jerry”, year = 1}

S2 = S1#stu{year = 2}.
#stu{name = “Jerry”, year = 2}

#stu{name = N, year = Y} = S2.
N.
“Jerry”
Y.
2

S2#stu.name.
“Jerry”

Declares
record type

Creates
record

Creates
record from existing

one

Read records

Q5

EXAMPLE: LIFTS_V1

Open lifts.hrl

Look at record declaration

Open lifts_v1.erl

Start in start_car/1

Look at spawn, receive, send from the shell

Add other messages to car_loop

AS A PROJECT WEARS ON, STANDARDS
FOR SUCCESS SLIP LOWER AND LOWER

40% of OpenBSD installs lead to shark attacks.
It’s their only standing security issue.

THE TRUTH ABOUT
SEND AND RECEIVE

Receiving Process

Mailbox Code with receive

loop() ->
receive

{msgY} -> doY();
{msgZ} -> doZ();

after 1000 -> timeout
end,
receive

{msgX} -> doX(), loop();
end.

Save Queue

{msgX}

{msgY}

Sending
Code

Pid ! {msgX}
Pid ! {msgY}

MAKING THE PROCESS
SEND MESSAGES BACK

Open lifts_v2.erl

Notice:

Receive loop now expects to know who’s asking
for information

New car_command functions send self(), then wait
for message back

self() yields the Pid of the current process

