
HASKELL’S TYPECLASSES
Curt Clifton

Rose-Hulman Institute of Technology

Please SVN Update your HaskellInClass folder,
then open typeClasses.hs

SOME ADMINISTRATIVE FOO

ERLANG TEXT

On-line resources are kinda sucky

Using Programming Erlang, Software for a Concurrent
World, by Joe Armstrong

PDF and paper versions available for purchase at:
http://www.pragprog.com/titles/jaerlang

Cost for PDF + ePub + mobi is $22.50

CARTOON
OF LAST

THURSDAY

CARTOON
OF LAST

THURSDAY

HASKELL TYPECLASSES

Like interfaces in Java

Provide polymorphism by specifying that a type
supports certain operations

But more powerful…

EXAMPLE

class MyEq a where
 isEqual :: a -> a -> Bool

declares a typeclass,
but think “interface”

instance type name,
think “self” but for types

Any type that claims to be an
instance of MyEq (think “implements
the MyEq interface”) must provide a
function that takes two things of it’s
type and returns a Bool.

Q1

INSTANCE DECLARATIONS

Syntax:
instance TypeClassName DataType where

 <Required and optional function declarations>

Example:
 instance MyEq String where
 isEqual "" "" = True
 isEqual "" _ = False
 isEqual _ "" = False
 isEqual (c:cs) (c':cs') =
 (c == c') && isEqual cs cs'

think “String
implements

MyEq”

MORE POWER!

class MyEq2 a where
 isEqual2 :: a -> a -> Bool

 isNotEqual2 :: a -> a -> Bool

MORE POWER!

class MyEq2 a where
 isEqual2 :: a -> a -> Bool
 isEqual2 x y =
 not (isNotEqual2 x y)

 isNotEqual2 :: a -> a -> Bool
 isNotEqual2 x y =
 not (isEqual2 x y)

Q2

SOME BUILT-IN TYPECLASSES

Show: converts values to Strings

show :: (Show a) => a -> String

Read: the opposite of Show, provides simple parsing

read :: (Read a) => String -> a

readsPrec :: (Read a) => Int -> String -> [(a, String)]

Eq, Ord, Num, Double, Float, Int, Integer, Rational, …
Q3–5

I NEED MORE POWER!

Collectible Scotty Plate
get yours at

http://collectibleshop.tripod.com/star-trek-plates.html

data Color = Red | Yellow | Blue
 deriving
 (Read, Show, Eq, Ord, Enum)

ONE MORE WAY TO
NAME TYPES

newtype UserID = UserID Int
 deriving (Eq, Ord, Show)

Name of new type

Type constructor

Representation type

Operations to expose

THREE WAYS TO NAME TYPES

data BinTree a = ExtNode | IntNode a (BinTree a) (BinTree a)

A brand new, structured, algebraic datatype

type String = [Char]

Just synonyms, String and [Char] interchangeable

newtype UserID = UserID Int deriving (Eq, Show, Ord)

Distinct type, represented as underlying type, but
only supports some operations, not interchangeable

Q6

