HASKELLS TYPECLASSES

Curt Clifton
Rose-Hulman Institute of Technology

Please SVN Update your HaskelllnClass folder,
then open typeClasses.hs

SOME ADMINISTRATIVE FOO

ERLANG TEXT

® On-line resources are kinda sucky

® Using Programming Erlang, Software for a Concurrent
World, by Joe Armstrong

® PDF and paper versions available for purchase at:
http://www.pragprog.com/titles/jaerlang

® Cost for PDF + ePub + mobi is $22.50

CARTOON
OF LAST
THURSDAY

Number 1477: Read Manual Before Operation

Hey Hanners,
what's up?

What? Oh, I'm
in the coPPee shop
now. Hi, Dora.

Oh, I'm Pine, I'm Pine! I hit, that sweet spot;
at around 40 hours of bein' awake where
you Peel GREAT! Can I have a cup of coPfee?

I'li pour you some decar.
The 1ast thing You heed right
now is a sbimolant.

Here you go.

It's coPPee.

CARTOON ‘ﬁ)

OF LAST o
THURSDAY |

Copyright 2003-2009 J. Jacques

HASKELL TYPECLASSES

® Like interfaces in Java

® Provide polymorphism by specifying that a type
supports certain operations

® But more powerful...

EXAMPLE

Instance type name,
think “self”” but for types

iclass) MyEq (a) where
isEqual :: a -> a -> Bool

(JEICIERIIdE S Any type that claims to be an

ISR jnstance of MyEq (think “implements
the MyEq interface”) must provide a
function that takes two things of it’s

type and returns a Bool.

Ql

INSTANCE DECLARATIONS

® Syntax:
instance TypeClassName Datalype where
<Required and optional function declarations>

* Example: (instance MyEq String)where

-ISEqua' IRIEERIR]] i Tr'ue
e |SEqual ™" _ = False
implements 1skqual _ = F?-Ise.
MyEq” ISEqUAIMCE . CS.) @ CS5=) "=

(¢ ==) && 1sEquUalls S CcS*

MORE POWER!

class MyEg2 a where
isEqual2 :: a -> a -> Bool

isNotEqual2 :: a -> a -> Bool

MORE POWER!

class MyEg2 a where
isEqual2 :: a -> a -> Bool
B Equaili? x: v =
not (isNotEqual2 x y)

isNotEqual2 :: a -> a -> Bool
isNotEqual2 x y =
not (isEqual2 x y)

SOME BUILT-IN TYPECLASSES

® Show: converts values to Strings
® show :: (Show a) => a -> String
® Read: the opposite of Show, provides simple parsing
® read :: (Read a) => String -> a
® readsPrec :: (Read a) => Int -> String -> [(a, String)]

® Eq, Ord, Num, Double, Float, Int, Integer, Rational, ...
Q3-5

| NEED MORE POWER!

data Color = Red | Yellow | Blue
deriving
(Read, Show, Eq, Ord, Enum)

Collectible Scotty Plate

get yours at
http://collectibleshop.tripod.com/star-trek-plates.html

ONE MOREWAY TO
NAME TYPES

Type constructor

newtype(Userﬁ?}=lUserIDHInt!
deriving ((Eq, Ord, Show)

Representation type

THREE WAYS TO NAME TYPES

® data BinTree a = ExtNode | IntNode a (BinTree a) (BinTree a)

® A brand new, structured, algebraic datatype
® type String = [Char]

® Just synonyms, String and [Char] interchangeable

® newtype UserlD = UserID Int deriving (Eq, Show, Ord)

® Distinct type, represented as underlying type, but
only supports some operations, not interchangeable

Q6

