
CSSE 490 Model-Based
Software Engineering:

More Software Factories

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Finish Software Factories
  Examine Executable UML
  Short Action Language Example
  Recipe Framework for

Manual Code Inclusion

Q3

Recall: Software Factories
  1990’s Software Factories emerged as the

new automated programming
  Faced an untrained community coupled with

limitations in computing capabilities
 The Virtual Software Factory
 Software Templates

 Software Refinery

  Devolved into IDEs configured for efficient
development of Domain applications
(led by Microsoft these days)

Recall: Software Factories Schema
  Schema defines viewpoints for modeling and

building a system (e.g., enterprise system):
 Presentation, form layout and workflow
 Component structure and business data model
 Persistence mapping, Deployment, …

  Schema identifies core artifacts as well as the

most efficient way of producing them
 DSLs, frameworks, patterns, manual programming

  Schema identifies commonalities and

differences among applications in the domain

Software Factories Templates

  Makes the Schema usable

  Load SF Template into IDE to
configure it for specific domain
 Provides the necessary

frameworks or libraries
 Contributes project types suitable

for the factory
 Delivers build scripts
 Extends IDE with DSL editors and

transformations

Q1

MS DSL Tools Example

Source: http://galilee.microsoft.fr/(ncqibzbvkp2ezr45aevbcqjk)/
a17fdcfb90f14a7592045f1c0fc5e97f/

Defining a Metamodel

Source: http://galilee.microsoft.fr/(ncqibzbvkp2ezr45aevbcqjk)/
a17fdcfb90f14a7592045f1c0fc5e97f/

Software Factory and MBSE’s
  SFs use model-based concepts without major changes

  DSLs are used to build models, Languages often graphical
  Some provide tooling to define the metamodels as well as

concrete syntax and editors

  SFs seldom use OMG standards for their infrastructure
  DSLs are not UML based
  Metamodels are not based on the MOF, and not QVT

  Application developer’s perspective

  Models are first class artifacts in development projects
  Editors and transformations integrate seamlessly with the IDE

  Infrastructure developer’s perspective

  Metamodels, editor definitions and transformations are first
class artifacts

  Tools to build them are seamlessly integrated into the IDE

Q2

Same Semantics for Different Views

Q3

Graphical Model Editor

GME: Modeling based on previously
defined Metamodel

GME: OCL Constraint Validation

Executable UML (xUML) Concepts

  Executable UML is not a formal standard, but a
goal for a UML-based programming language

  Must eliminate redundancy and ambiguities, to
increase executability of UML

  Action language needed to define complete
implementations of software systems

  Not a DSL, but rather a universal,
UML-based programming language

Q4

Executable UML Action Semantics
  Hard to model a complete

system today via UML or even
MOF-based languages

  Action semantics do not contain
structural constructs (classes,
attributes & relationships)
 Already defined in the structural

part of the model
 Merely define behavioral building

blocks

Q5

Action Semantics in UML 2.0
  Models procedural behavior via abstract

syntax
  Variables for assigning/reading (sets, bags…)
  Arithmetic and logical operations
  Control flow (if-then-else, case, block…)
  Class extents that be queried (SQL-like)
  Creation, deletion, and navigation of

associations
  Generation of signals and timers
  Definition of functions

Q6

Action Languages Example 1/3

drive(v : Vehicle): Person

<<id>> name : String
age : int

Person

driver() : Person

<<id>> plate : String
make : String
model : String

Vehicle
11

vehicledriver

R1

name : String

Company1*

ownercompanyCar

R2

myJeep = create Vehicle with plate = “IYQ2”
myJeep.make = “Chrysler Jeep”
myJeep.model = “Liberty CRD”

Action Languages Example 2/3

shawn = create Person with name = “Shawn”

We can now call the operation drive() to let the driver drive the
vehicle.

[actualDriver] = drive[aVehicle] on shawn

What is still missing, of course, is the implementation of the
operation drive(). The least it must do is to instantiate the
association R1 (that is, to create a link between the two concerned
objects).

link this R1 aVehicle

Action Languages Example 3/3

Let’s assume we want to find all people in the system:

theCurrentDriver = this.R1.“driver“

{allPersons} = find-all Person

The braces state that allPersons is a set of objects instead of
just one.
One can also limit such a search. For example, all vehicles of
the brand Jeep can be looked for.

{Jeeps} = find Vehicle where make = “Jeep”

Example: Kennedy Carter’s iUML
  Model

Diagrams
  Code
  Integration

Recipe Framework for Integrating
Manually Developed Code

Homework and Milestone Reminders
  Milestone 3/4: Final MBSE Environment (see

Milestone 3/4 assignments)
 Due by 11:55pm, Friday, May 13th, 2011.

  Term Paper and Presentation

 Paper Due by 11:55pm, Tuesday, May 17th, 2011.
 Presentation Due by 1:35pm, Thursday, May 19th,

2011.

