
CSSE 490 Model-Based
Software Engineering:
Software Factories

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Discussion of Milestone 3
  Finish Class Project Exercise
  Example: DRACO
  Context for Software Factories
  Key Software Factory Concepts
  Short Microsoft SF Example

Q3

Exercise: Reflect on Class Project

Describe how Milestone 3
Environment Automates
Software Development.

  What are the assembling steps?
  What are the transformational

steps?
  Is the domain language a separate

concern?
  Draw a diagram of how it works?

Q1

Early Generative Reuse System
DRACO – Jim Neighbors (1984)

  Programs are written in
domain-specific languages

  Optimize DSL programs
(because the domain
abstractions are visible)

  Translate DSL to another,
lower-level abstraction DSL
and do the same

  Process repeats until you
get to machine code

Unoptimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Optimized
DSL

program

Q2

DRACO Perspective of Programming

SQL
select

statement

Parser
Inefficient
relational
algebra

expression
Optimizer

Efficient
relational
algebra

expression

Code
Generator

efficient
program

Domain-Specific Language
(e.g., set theoretic data language)

Generative
Programming

Automatic Programming

DRACO View of Query Optimization

  Generative Programming
occurs when mapping
between levels of
abstraction

  Automatic Programming
occurs when optimizing
(or refining/transforming)
within a level of
abstraction is done
automatically

Optimized
Algebra

Expression

query
optimizer

Unoptimized
program

Optimized
Java

class file

code
optimizer

SQL
statement

Unoptimized
Algebra

Expression

Q3

  Generative Programming (GP)
 Understand domain well enough to generate software
 Programs that synthesize other programs

  Metaprogramming, skeleton communities

  Domain-Specific Languages (DSLs)
 Elevate program specifications to compact domain-

specific notations that are easier to write & maintain

  Automatic Programming
 Culmination of GP and DSLs
 Generate efficient programs from declarative specs
 Precursor to Model-Based Software Engineering

MBSE Requires Advances in:

  Structure of matter is fundamental to
chemistry and physics

  Structure of material is fundamental to
engineers

  Structure of software is fundamental to
software engineering
 structure = modules and their composition

  Structure of software not well-understood

 Software design, which is a process to define the
structure of an application, is an art form

 We need a science of design for software

A Case for Automated Programming

So Did the Database People Get it?

  Nope…Look at the Computing
Surveys Review of Codd’s
1970 seminal paper on the
Relational Model...

  Do you get it?

  This is a race and my leg is
running now…
  Your leg is coming up!

Looking at the details ….

Key Original Papers
  Automatic Programming

Robert Balzer. A 15-year Perspective on Automatic Programming.
IEEE Transactions on Software Engineering, 11(11):1257–1268,
November 1985.
David R. Barstow. Domain-Specific Automatic Programming. IEEE
Transactions on Software Engineering, 11(11):1321–1336, November
1985.
Charles Rich and Richard C. Waters. Automatic Programming: Myths
and Prospects. IEEE Computer, 21(8):40–51, August 1988.

  Automated Planning
Keith Golden. A Domain Description Language for Data Processing.
Proc. of the International Conf. on Automated Planning and
Scheduling, 2003.
M. Stickel et al. Deductive Composition of Astronomical Software from
Subroutine Libraries. Proc. of the International Conf. on Automated
Deduction, 1994.

If you automated software
production, what would the factory
contain?

  Think for 15 seconds…
  Let’s talk…

Q3 Q4

Recall: Modeling Concepts

Domain Meta Model Abstract
Syntax

Static
Semantics

describes
relevant

concepts of

Formal
Model

0..*

Subdomain

<<instanceof>>

Concrete
Syntax

specified based on

Semantics
gets meaning from

specified
based on

DSL

respects

Modeling
Language

<<synonym>>

Recall: Platform Concepts

Domain

0..*
based on

Plattform
supports

<<abstract>>
Building
Block

Framework Component AspectLibraryMiddleware

{open}

Q5

Recall Transformations

Platform Platform
Idioms

<<role>>
Product

Non-generated
Artifact

0..*

Generated
Artifact0..*

 Model2Plat-
form Transform

0..*

1..*

Target

<<abstract>>
Transfor-
mation

Formal
Model

Source

 Model2Model
Transform

TargetMeta
Model <<instanceof>>

Target Meta
Model

Source
Meta Model

Semantics

gets meaning
from

Recall: Software System Product Lines

Product Line

<<role>>
Product

Domain

Software
System Family

may support

1..*

Domain
Architeture

Transfor-
mation

0..*

DSL

1

Platform

supports

Runtime
System

describes
relevant

concepts of

Generative Programming Concepts

Domain<<gp>>
Problem Space

<<synonym>>
Meta Model

describes
relevant

concepts of

Formal
Model

<<instanceof>>

<<gp>>
Feature
Model

{open}

<<gp>>
Specification

Static
Semantics

<<respects>><<gp>>
Configuration

Knowledge

Model2Platform
TransformationPlatform<<gp>>

Solution Space
<<synonym>>

More GP Concepts

  Platform consists of maximally combinable and
minimally redundant components

  GP is often routine configuration as opposed to
creative construction

Framworks

Routine
Configuration

Creative
Construction

Wizards

Property Files

Feature-Model
Based

Configuration

Graph-Like
Languages

Tabular
Configurations

Manual
Programming

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
Parameters

Q6

Software Factories
  1990’s Software Factories emerged as the

new automated programming
  Faced an untrained community coupled with

limitations in computing capabilities
 The Virtual Software Factory
 Software Templates

 Software Refinery

  Devolved into IDEs configured for efficient
development of Domain applications
(led by Microsoft these days)

Software Factories Schema
  Schema defines viewpoints for modeling and

building a system (e.g., enterprise system):
 Presentation, form layout and workflow
 Component structure and business data model
 Persistence mapping, Deployment, …

  Schema identifies core artifacts as well as the

most efficient way of producing them
 DSLs, frameworks, patterns, manual programming

  Schema identifies commonalities and

differences among applications in the domain
Q7

Software Factories Templates

  Makes the Schema usable

  Load SF Template into IDE to
configure it for specific domain
 Provides the necessary

frameworks or libraries
 Contributes project types suitable

for the factory
 Delivers build scripts
 Extends IDE with DSL editors and

transformations

Q8

MS DSL Tools Example

Source: http://galilee.microsoft.fr/(ncqibzbvkp2ezr45aevbcqjk)/
a17fdcfb90f14a7592045f1c0fc5e97f/

Defining a Metamodel

Source: http://galilee.microsoft.fr/(ncqibzbvkp2ezr45aevbcqjk)/
a17fdcfb90f14a7592045f1c0fc5e97f/

Graphical Model Editor

GME: Modeling based on previously
defined MM

GME: OCL Constraint Validation

Homework and Milestone Reminders
  Milestone 3: Light-Weight Transformation

Environment (see Milestone 3 assignment)
 Due by 11:55pm, Thursday, May 12th, 2011.

  Milestone 4: Final MBSE Environment (see

Milestone 4 assignment)
 Due by 11:55pm, Friday, May 13th, 2011.

