CSSE 490 Model-Based

| Software Engineering:
" " Automatic Programming
2 Perspectives

Shawn Bohner

Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

o —

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

m Discussion of Milestone 3

® Introduce Automatic
Programming

m Look at Assistant approach
(if time)

TTTTTTTTTTTTTTTTTTTTT

What would you say to the
statement “Today’s specification

language becomes tomorrow’s
programming language?” |

m Think for 15 seconds...
m Let’s talk...

TTTTTTTTTTTTTTTTTTTTT

o

Philosophy: Reliable Systems are

Defined in Terms of Reliable Systems

Use only reliable systems

Integrate these systems

with reliable systems PRIMITIVE
SYSTEMS

The result is a system(s)

. . . ABSTRACT SYSTEMS
which is reliable

Use resulting reliable MORE ABSTRACT SYSTEMS

system(s) along with more
primitive ones to build new
and larger reliable systems

A recursively reliable and reusable process

TTTTTTTTTTTTTTTTTTTTT

N
‘ Automatic Programming
m Getting software to write software

m Great idea, but turns out to be hard

m Should be easier than other tasks

0 But programming requires some strategy
(i.e., cunning and guile ©)

0 Many human tasks difficult to automate

Requirements Specification System
> > >

Analysis Generation
Qeﬁnemen) L@forma@

OOOOOOOOOOOOOOOOOOOOO

m Oversold early on and
under-delivered on promises

m So people began to avoid
this area

= “Automated Programming”
became words of warning

m Since then, the limitations
have eased
1 Memory space
0 Knowledge representation
0 Transformation systems

Automatic Programming

OOOOOOOOOOOOOOOOOOOOO

A

Complexity: Intricacy (Bach)

- | i . ,—_.‘
435 2 JI—JlJd @ dar) | T
o
4 Y -} 11 P . 1
oA :
s 4 77 7z < u*m
~ l - [! rF 19 r r-’~ [[N
2 | 4
J | A - l ,1 - J- Jz 3 —
2 17 s - - — O Pre— Y
EEE e e ==
e — 1 -1 S SN S —— - T
T Tt Pz - =
5 3 l 3
'_ A 3 ;' A
2 a5 3 5 4 3 - . ‘
. i1 S T — i
X \{] ‘ 1T e P < ! L J% l_’lI r i i)—-
o o —" z S I T S — -
' = P ~n 1 ? (&) -
5 : | i S~ \--—-/I ‘ 'g'\"""'/..-. 12 r
2 ,
1 Q 6/—-‘\0 2 N — —‘.\ 4
; - — i H;—'L—QH%(\O J %
T & e o —— — s Z 3
: 2 5 3| " - T | wm 1
wil e ’ 1 7) 3 1

ROSE-HULMAN
INSTITUTE OF TECHNOLOGY

Complex

ty:

<

———J 3
EFE

olume of Detail (Strauss)

EEEE

- 31
A ddid i ddd e

e ———

#

=
ppfe

"H

—1 3 i.- - !!‘!Eéi—

— 1 ?—-— = | TFEEC: = F = ;’-—-‘__—-—93 3 -
— ==
=p e T EE L+
=S5 = = = = = =
oo e 4 pd B e e

— =
=, %“2 = _%{rj, —
d—esc;_—- & - = = - _

o - = =
— - <=

3.4 B

INSTITUTE OF

TECHNOLOGY

—

Automatable Programming Activities

r Business Manager A
Brief, vague requirementw BQ
r Domain Expert >kh0\:|13|n
Detailed requirement ‘ s(]gs

r Requirements Engineer<

Specification &0
r})ftware Engineer >kn0W| Qrs
Code) sﬁgs

TTTTTTTTTTTTTTTTTTTTT

—

Transformational Approaches

Clear > Efficient

Specification| y «o 5 y*x

m <— min(A)

|

N <— oo
for i < 1 to size(A) do
\f if A[i] < mthen
Implementation m < A[/]

TTTTTTTTTTTTTTTTTTTTT

- —

Natural Language Specification

“The SystemX transmission times are entered into the schedule”

“Each SystemX clock transmission times and transmission
length is made a component of a new transmission entry which
Is entered into the transmission schedule”

Problem is informality

TTTTTTTTTTTTTTTTTTTTT

A

Deductive Synthesis

Precondition: P(x)

Postcondition: O(x,y)

Vx dy P(x) = O(%,)

< =

< €—

TTTTTTTTTTTTTTTTTTTTT

Recall: Levels of Formality

Formal Formal Theorem
Specification Verification Provers

Transformation
Systems /

TTTTTTTTTTTTTTTTTTTTT

Very High Level Formal Languages

prev = {}; val :={};
val(x) := {_x}l ;
(while newnodes = {})
n{from|newnodes;
(Vm Elgraph {n})
newval := val(n) + cost(n, m);
if val(m) =[om| or val(m) > newval then
val(m) := newval,
prev(m) := n;
if m = y then newnodes with :=|m; end if;
end if;
end V;
end while;

TTTTTTTTTTTTTTTTTTTTT

Programming by Example

{()—=1()

(A B) — (A)

(A B C D) — (A B)
(ABCDEF)— (ABC))

(DEFUN HALF (X)
(H X X))

(DEFUN H (X Y)
(COND ((ATOM Y) NIL)
(T (CONS (CAR X)

(H (CDR X)

(CDDR X))))))

TTTTTTTTTTTTTTTTTTTTT

A

Computing Profession Choice... ©

LETS SIT FOR A BIT, HAMLET... ! ;

IMPOR T TO CHOOSE A
%ﬁ% WILL MAKE

o
The Assistant Approach
(D,
m Productivity: Delegate ‘1
routine details 0
= Reliability: 7 @

Standardization of Engineer Apprentice
common practices \ f

O
oL OO
°OoOO

N

State of the Art

Environment

TTTTTTTTTTTTTTTTTTTTT

Example: Table-Lookup

function table-lookup(table, key)
bucket < table[hash(key)]
loop
if bucket = nil then return nil
entry < head(bucket)
if key(entry) = key then return entry
bucket < tail(bucket)

TTTTTTTTTTTTTTTTTTTTT

Table-Insert

procedure fable-insert(table, entry)
push(entry, table[hash(key(entry))])

TTTTTTTTTTTTTTTTTTTTT

Table-Delete

procedure fable-delete(table, key)
index < hash(key)
bucket < table[index]
if key(head(bucket)) = key
then table[index] < tail(bucket)
else bucket-delete(bucket, key)
return table

TTTTTTTTTTTTTTTTTTTTT

Bucket-Delete

procedure bucket-delete(bucket, key)
previous < bucket
loop
bucket < tail(previous)
if bucket = nil then return nil
if key(head(bucket)) = key then
tail(previous) < tail(tail(previous))
return nil
previous < bucket

NNNNNNNNNNNNNNNNNNNNN

Analysis: Table-Lookup

function table-lookup(table, key)
bucket < table[hash(key)]

loop é\.% lﬁsr
if bucket = nil then return nil ST
entry < head(bucket)

‘if key(entry) = key then return entry

bucket < tail(bucket)

TTTTTTTTTTTTTTTTTTTTT

Analysis: Table-Lookup

function table-lookup(table, key)
bucket < table[hash(key)]
loop

if bucket = nil then return nil
____entry < head(bucketf)
if key(entry) = key then return entry
bucket < tail(bucket) | S

Sratio,,

TTTTTTTTTTTTTTTTTTTTT

Analysis: Table-Lookup

function table-lookup(table, key)
_bucket < table[hash(key)] .

loop g\"\%

if bucket = nil then return nil | Sar

eniry < head(bucket)

if key(entry) = key then return entry

buckeft < talREucFetS \ Enu List

TTTTTTTTTTTTTTTTTTTTT

Analysis: Bucket-Delete

procedure bucket-delete(bucket, key)
previous < bucket
loop| Siheq,
bucket < tail(previous)
if bucket = nil then return nil
if key(head(bucket)) = key then
tail(previous) < tail(tail(previous))

return nﬂ_‘

previous < bucket

TTTTTTTTTTTTTTTTTTTTT

Analysis: Bucket-Delete

procedure bucket-delete(bucket, key)

previous < bucket

Toop
bucket < tail(previous)
if bucket = nil then return nil

Tray);

c'Ng.
List

if key(head(bucket)) = key then

tail(previous) < tail(tail(previous))

return nil

| previous < bucket

TTTTTTTTTTTTTTTTTTTTT

Analysis: Bucket-Delete

procedure bucket-delete(bucket, key)
previous < bucket
loop
bucket < tail(previous)
if bucket = nil then return nil
if key(head(bucket)) = key then
tail(previous) < tail(tail(previous))
‘return nil ‘

previous < bucket SBlic
Lt

TTTTTTTTTTTTTTTTTTTTT

Analysis: Bucket-Delete

procedure bucket-delete(bucket, key)
previous < bucket

L||-~.ea
bucket < ta:l(prewou?)areh Ointg,.

E, Lj
if bucket = nil then return nil .,

| if key(head(bucket]) = key then

tail(previous) < tail(tail(previous))

return nil Shied
Oy, S

| previous < bucket

TTTTTTTTTTTTTTTTTTTTT

Homework and Milestone Reminders
m Read Chapter 12 in text

m Milestone 3: Light-Weight Transformation
Environment (see Milestone 3 assignment)

0 Due by 11:55pm, Thursday, May 5", 2011.

TTTTTTTTTTTTTTTTTTTTT

