
CSSE 490 Model-Based
Software Engineering:

Automatic Programming
Perspectives

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Discussion of Milestone 3
  Introduce Automatic

Programming
  Look at Assistant approach

(if time)

Q3

What would you say to the
statement “Today’s specification
language becomes tomorrow’s
programming language?”

  Think for 15 seconds…
  Let’s talk…

Q3

Philosophy: Reliable Systems are
Defined in Terms of Reliable Systems
  Use only reliable systems

  Integrate these systems
with reliable systems

  The result is a system(s)
which is reliable

  Use resulting reliable
system(s) along with more
primitive ones to build new
and larger reliable systems

A recursively reliable and reusable process

MORE ABSTRACT SYSTEMS

ABSTRACT SYSTEMS

PRIMITIVE
SYSTEMS

Automatic Programming
  Getting software to write software
  Great idea, but turns out to be hard
  Should be easier than other tasks

 But programming requires some strategy
(i.e., cunning and guile J)

 Many human tasks difficult to automate

Analysis

Requirements

Generation

Specification

Refinement Transformation

System

Automatic Programming

  Oversold early on and
under-delivered on promises

  So people began to avoid
this area

  “Automated Programming”
became words of warning

  Since then, the limitations
have eased
 Memory space
 Knowledge representation
 Transformation systems

Complexity: Intricacy (Bach)

Complexity: Volume of Detail (Strauss)

!"

#$%&'()*%+'$,%',-'.%/0&1,2$3+$11&+$3 !"#$%&"'(

© 2005-present, Dewayne E Perry

)*+,-"./$01'2"3-$4'*5'6"$3/-'78$&3%99:

Automatable Programming Activities	

Business Manager	

Brief, vague requirement	

Detailed requirement	

Specification	

Code	

Domain Expert	

Requirements Engineer	

Software Engineer	

Transformational Approaches	

Specification	

Implementation	

Clear	
 Efficient	

X ** 2	
 X * X	

m ← min(A)	

m ← ∞
for i ← 1 to size(A) do
 if A[i] < m then
 m ← A[i]	

Natural Language Specification	

“The SystemX transmission times are entered into the schedule”	

“Each SystemX clock transmission times and transmission
length is made a component of a new transmission entry which
is entered into the transmission schedule”	

Problem is informality	

Deductive Synthesis	

x

y

)(xPPrecondition:	

),(yxQPostcondition:	

),()(yxQxPyx →∃∀

Recall: Levels of Formality

Transformation
Systems

Formal
Specification

Formal
Verification

Theorem
Provers

Very High Level Formal Languages	

prev := {}; val := {};
val(x) := {x} ;
(while newnodes ≠ {})

 n from newnodes;
 (∀m ∈ graph {n})
 newval := val(n) + cost(n, m);
 if val(m) = om or val(m) > newval then
 val(m) := newval;
 prev(m) := n;
 if m ≠ y then newnodes with := m; end if;
 end if;
 end ∀;

end while;	

Programming by Example	

{() → ()
 (A B) → (A)
 (A B C D) → (A B)	

 (A B C D E F) → (A B C)}	

(DEFUN HALF (X)
 (H X X))

(DEFUN H (X Y)
 (COND ((ATOM Y) NIL)
 (T (CONS (CAR X)
 (H (CDR X) (CDDR X))))))

Computing Profession Choice… 

!

"#$%&'()$*&#+$&+,&-$./%0+1#2*#00%*#2 !"#$%&"'(

© 2005-present, Dewayne E Perry

)*%'+%,$'-./"'$0"'1&*23'40*5#"'

The Assistant Approach	

  Productivity: Delegate
routine details

  Reliability:
Standardization of
common practices	

Example: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Table-Insert	

procedure table-insert(table, entry)
push(entry, table[hash(key(entry))])	

Table-Delete	

procedure table-delete(table, key)
index ← hash(key)
bucket ← table[index]
if key(head(bucket)) = key

 then table[index] ← tail(bucket)
 else bucket-delete(bucket, key)

return table	

Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Homework and Milestone Reminders
  Read Chapter 12 in text

  Milestone 3: Light-Weight Transformation

Environment (see Milestone 3 assignment)
 Due by 11:55pm, Thursday, May 5th, 2011.

