
CSSE 490 Model-Based
Software Engineering:

Automatic Programming
Perspectives

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Discussion of Milestone 3
  Introduce Automatic

Programming
  Look at Assistant approach

(if time)

Q3

What would you say to the
statement “Today’s specification
language becomes tomorrow’s
programming language?”

  Think for 15 seconds…
  Let’s talk…

Q3

Philosophy: Reliable Systems are
Defined in Terms of Reliable Systems
  Use only reliable systems

  Integrate these systems
with reliable systems

  The result is a system(s)
which is reliable

  Use resulting reliable
system(s) along with more
primitive ones to build new
and larger reliable systems

A recursively reliable and reusable process

MORE ABSTRACT SYSTEMS

ABSTRACT SYSTEMS

PRIMITIVE
SYSTEMS

Automatic Programming
  Getting software to write software
  Great idea, but turns out to be hard
  Should be easier than other tasks

 But programming requires some strategy
(i.e., cunning and guile J)

 Many human tasks difficult to automate

Analysis

Requirements

Generation

Specification

Refinement Transformation

System

Automatic Programming

  Oversold early on and
under-delivered on promises

  So people began to avoid
this area

  “Automated Programming”
became words of warning

  Since then, the limitations
have eased
 Memory space
 Knowledge representation
 Transformation systems

Complexity: Intricacy (Bach)

Complexity: Volume of Detail (Strauss)

!"

#$%&'()*%+'$,%',-'.%/0&1,2$3+$11&+$3 !"#$%&"'(

© 2005-present, Dewayne E Perry

)*+,-"./$01'2"3-$4'*5'6"$3/-'78$&3%99:

Automatable Programming Activities	

Business Manager	

Brief, vague requirement	

Detailed requirement	

Specification	

Code	

Domain Expert	

Requirements Engineer	

Software Engineer	

Transformational Approaches	

Specification	

Implementation	

Clear	 Efficient	

X ** 2	 X * X	

m ← min(A)	

m ← ∞
for i ← 1 to size(A) do
 if A[i] < m then
 m ← A[i]	

Natural Language Specification	

“The SystemX transmission times are entered into the schedule”	

“Each SystemX clock transmission times and transmission
length is made a component of a new transmission entry which
is entered into the transmission schedule”	

Problem is informality	

Deductive Synthesis	

x

y

)(xPPrecondition:	

),(yxQPostcondition:	

),()(yxQxPyx →∃∀

Recall: Levels of Formality

Transformation
Systems

Formal
Specification

Formal
Verification

Theorem
Provers

Very High Level Formal Languages	
prev := {}; val := {};
val(x) := {x} ;
(while newnodes ≠ {})

 n from newnodes;
 (∀m ∈ graph {n})
 newval := val(n) + cost(n, m);
 if val(m) = om or val(m) > newval then
 val(m) := newval;
 prev(m) := n;
 if m ≠ y then newnodes with := m; end if;
 end if;
 end ∀;

end while;	

Programming by Example	

{() → ()
 (A B) → (A)
 (A B C D) → (A B)	
 (A B C D E F) → (A B C)}	

(DEFUN HALF (X)
 (H X X))

(DEFUN H (X Y)
 (COND ((ATOM Y) NIL)
 (T (CONS (CAR X)
 (H (CDR X) (CDDR X))))))

Computing Profession Choice…

!

"#$%&'()$*&#+$&+,&-$./%0+1#2*#00%*#2 !"#$%&"'(

© 2005-present, Dewayne E Perry

)*%'+%,$'-./"'$0"'1&*23'40*5#"'

The Assistant Approach	

  Productivity: Delegate
routine details

  Reliability:
Standardization of
common practices	

Example: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Table-Insert	

procedure table-insert(table, entry)
push(entry, table[hash(key(entry))])	

Table-Delete	

procedure table-delete(table, key)
index ← hash(key)
bucket ← table[index]
if key(head(bucket)) = key

 then table[index] ← tail(bucket)
 else bucket-delete(bucket, key)

return table	

Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Table-Lookup	

function table-lookup(table, key)
bucket ← table[hash(key)]
loop

 if bucket = nil then return nil
 entry ← head(bucket)
 if key(entry) = key then return entry
 bucket ← tail(bucket)	

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Analysis: Bucket-Delete	

procedure bucket-delete(bucket, key)
previous ← bucket
loop

 bucket ← tail(previous)
 if bucket = nil then return nil
 if key(head(bucket)) = key then
 tail(previous) ← tail(tail(previous))
 return nil

previous ← bucket

Homework and Milestone Reminders
  Read Chapter 12 in text

  Milestone 3: Light-Weight Transformation

Environment (see Milestone 3 assignment)
 Due by 11:55pm, Thursday, May 5th, 2011.

