
CSSE 490 Model-Based
Software Engineering:

Architecture Description
Languages (ADL)

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Discuss Case Study Paper
  Examine ADL Perspectives
  Discuss AADL

Q3

Einstein says… simple, but not too

Case Study/Homework:

“SysML-based systems engineering
using a model-driven development
approach” by Hans-Peter Hoffman

  What are some parallels between Unified
Modeling Language (UML) and SysML?

  How can SysML be used to produce
Models for the Model/Requirement and
Test Data Repositories?

  What do you think of SysML for specifying Black-box activity
diagrams from use cases? What about modeling behaviors be
conveyed down to the lower levels?

  What do the authors say about SysML for articulating
Architecture Design? Do you think that this is viable for
software?

Recall: Architecture vs. Design

Non-functional
Requirements
(“ilities”)

Functional
Requirements
(domains)

Architecture: where non-functional decisions are cast, and
functional requirements are partitioned
Design: where functional requirements are accomplished

Architecture
(ADL)

Design
(e.g., UML)

Recall: ADL Example
System simple_cs = {

Component client = {Port send-request}
Component server = {Port receive-request}
Connector rpc = {Roles {caller, callee}}
Attachments : {client.send-request to rpc.caller;
 server.receive-request to rpc.callee}

}

client

send-request

server

receive-request

caller callee

rpc

In principle, are System Architecture
and Software Architectures
substantially different? If so, how
should the Architecture Description
Languages (ADL) be different?

  Think for 15 seconds…
  Let’s talk…

Q3

Example ADLs

  Industrial
 AADL
 SysML
 xADL
 UML 2.0
 MetaH (Honeywell)

  Academic
 ACME (CMU/USC)
 Wright (CMU)
 Unicon (CMU)
 Aesop (CMU)
 Rapide (Stanford)
 SADL (SRI)
 C2 SADL (UCI)
 Lileanna
 Modechart

ADL Upsides
  ADLs represent a formal way of

representing architecture

  ADLs are intended to be both
human and machine readable

  ADLs support describing a
system at a higher level than
previously possible

  ADLs permit analysis of
architectures – completeness,
consistency, ambiguity, and
performance

  ADLs can support automatic
generation of software systems

ADL Downsides
  Still disagreement on what ADLs

should represent, particularly in
the behavior aspects

  Representations sometimes
difficult to parse and limited
support by commercial tools

  Most ADL work today has been
undertaken with academic rather
than commercial goals in mind

  Most ADLs tend to be very
vertically optimized toward a
particular kind of analysis

Industry versus Academia

Approaches to Architecture
Academic Approach
  Focus on analytic

evaluation of
architectural models

  Individual models
  Rigorous modeling

notations
  Powerful analysis

techniques
  Depth over breadth
  Special-purpose

solutions

Industrial Approach
  Focus on wide range of

development issues

  Families of models
  Practicality over rigor

  Architecture as the “big

picture” in development
  Breadth over depth
  General-purpose

solutions

Source: N. Medvidovic, USC

SAE Architecture Analysis &
Design Language (AADL) Standard

  Designed for Model-Based Engineering
 Notation for specification of runtime architecture of

real-time, embedded, fault-tolerant, secure, safety-
critical, software-intensive systems

  Fields of application:
 Avionics, Aerospace, Automotive, Autonomous

systems, Medical devices …

  Industry-driven International Standard
  www.aadl.info

Key Elements of SAE AADL Standard
  Core AADL language standard (SEI)

  Textual & graphical, precise semantics, extensible

  AADL Meta model & XMI/XML standard (SEI)
  Model interchange & tool interoperability

  UML profile for AADL
  Subset of OMG MARTE profile being defined by MARTE

  Error Model Annex as standardized extension Fault/
reliability modeling, hazard analysis

  Behavior Annex
  Externally observable behavior of components

  Programming Guidelines, Data Modeling Annexes

AADL: The Language 1/2

  Precise execution semantics for
components & interactions
  Thread, process, data, subprogram,

system,
  Processor, memory, bus, device, abstract

component, virtual processor, virtual bus
  Continuous signal processing &

stochastic event processing
  Data, event, message communication,

unqueued & queued
  Synchronous call/return, Shared data

access
  End-to-End flow specifications

AADL V2

AADL: The Language 2/2

  Operational modes, fault tolerant
configurations, levels of service

  Modeling of large-scale and
configurable systems
  Component variants
  Packaging of component classifiers
  Layered systems, parameterized

templates, component arrays…
  Accommodation of diverse

analysis needs
  User-defined properties, sublanguage

extensions

AADL V2

Language Etiquette …

System Type
system GPS
features
 speed_data: in data port metric_speed
 {SEI::BaseType => UInt16;};
 geo_db: requires data access real_time_geoDB;
 s_control_data: out data port state_control;

flows
 speed_control: flow path

 speed_data -> s_control_data;

properties SEI::redundancy => Dual;
end GPS;

System

GPS
speed_data

geo_db
s_control_data

{type}
extends
features
flows
properties

System Implementation
system implementation GPS.secure
subcomponents
 decoder: system PGP_decoder.basic;
 encoder: system PGP_encoder.basic;
 receiver: system GPS_receiver.basic;

connections
 c1: data port speed_data -> decoder.in;
 c2: data port decoder.out -> receiver.in;
 c3: data port receiver.out -> encoder.in;
 c4: data port encoder.out -> s_control_data;

flows
 speed_control: flow path speed_data -> c1 -> decoder.fs1
 -> c2 -> receiver.fs1 -> c3 -> decoder.fs1
 -> c4 -> s_control_data;
modes none;
properties arch::redundancy_scheme => Primary_Backup;
end GPS;

{implementation}
extends
refines type
subcomponents
calls
connections
flows
modes
properties

Bus

Processor

Some Standard Properties

 Dispatch_Protocol => Periodic;
 Period => 100 ms;
 Compute_Deadline => value (Period);
 Compute_Execution_Time => 10 ms .. 20 ms;
 Compute_Entrypoint => “speed_control”;
 Source_Text => “waypoint.java”;
 Source_Code_Size => 12 KB;

 Thread_Swap_Execution_Time => 5 us.. 10 us;
 Clock_Jitter => 5 ps;

 Allowed_Message_Size => 1 KB;
 Propagation_Delay => 1ps .. 2ps;
 Bus_Properties::Protocols => CSMA;

File containing the
application code

Code to be
executed on

dispatch

Thread

Protocols is a user
defined property

Example Graphical Specification:
Flight Manager in AADL

Navigation
Sensor

Processing

Integrated
Navigation Guidance

Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

10Hz 20Hz

5Hz

2Hz

From
Partitions

To
Partitions

Fuel Flow

Guidance

Nav
sensor
data

Nav signal
data

FP data

Performance
data

Nav
data Nav sensor

data

Nav data

FP data

Homework and Milestone Reminders
  Read Chapter 9 in text on Code Generation

Techniques

  Milestone 3: Light-Weight Transformation
Environment (see Milestone 3 assignment)
 Due by 11:55pm, Tuesday, May 3rd, 2011.

