
CSSE 490 Model-Based
Software Engineering:

MBSysE and Architecture
Description Languages
Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

You may feel like this about now…

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.

  Discuss Case Study Paper
  Examine why Model-Based

Systems Engineering needed
  Explore ADLs
  Discuss AADL

(if time)

Q3

Case Study/Homework:

“Model-Driven Systems
Engineering” by Balmelli et. al.

  What the authors mean by requirement-
driven systems development methods?

  How does RUP Architecture Framework
serve as a basis for MDSysD?

  What is the authors’ view of SysML and
how it supports MDSysD?

  What do the authors say about the use of transformation
methods? Are they effective? What is their metamodel like?

Late Discovery of System Problems
  System integration problems

 System instability & failures
  Implicit & mismatched assumptions
 Complexity of component interaction

  Current practice

 Build components first
 Then integrate & test

  Way forward

 Analyze system models early & often
 Evolve components & integrated system

Where the Faults are…

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

Source: NIST Planning report 02-3, “The
Economic Impacts of Inadequate Infrastructure
for Software Testing”, May 2002.

30x

What is the estimated cost
for fault removal?

1x

5x

10x

15x

Where are faults introduced?

70%

20%

10%

0%

Where are faults found?

20.5%

3.5%

16%

50.5%

9%

Mismatched Assumptions
Systems Engineer Control Engineer

A
pplication D

eveloper H
ar

dw
ar

e
E

ng
in

ee
r

System
Under
Control

Control
System

Compute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Physical Plant
Characteristics

Data Stream
Characteristics

Precision
Units

Concurrency
Communication

Distribution
Redundancy

Why do system level failures still occur despite fault
tolerance techniques being deployed in systems?

Architecture – A Definition

“The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them.”

Software Architecture in Practice,

Bass, Clements, and Kazman

How can Model-Base Engineering
techniques start to address the
situations that hamper systems
development?

  Think for 15 seconds…
  Let’s talk…

Q3

A Control Engineer Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s +

-

Matlab

Component Analysis

application Code

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Simulink

Tune parameters

Continuous feedback for
a control engineer

Continuous
feedback
in a controller

Software Engineer Perspective
with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Architecture
Tools

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

ADL Runtime

package Dispatcher is

A.p1 := B.p2;
Case 10ms:
 dispatch(a);
dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysis Reliability analysis
R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

Continuous feedback by
Comparing analysis results
with actual results

Application
Components

Architecture Model

Execution
Platform

A Combined Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s +

-

Component Analysis

Application Code

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Tune parameters

Continuous interaction
Between Control Engineer
& System Engineer

ADL Runtime
package Dispatcher is

A.p1 := B.p2;
Case 10ms:
 dispatch(a);
 dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysis Reliability analysis R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

Architecture
Models

Matlab

Simulink

Architecture
Tools

Model-Based Engineering (MBE) for
Computer-Based Systems
  Ensure system performance

and reliability prior to system
integration, test, or upgrade
 Prediction through quantitative

analysis & simulation based on
architecture models

  System validation through
model verification and
implementation compliance
checking

MDA can be like this sometimes…

Architecture vs. Design

Non-functional
Requirements
(“ilities”)

Functional
Requirements
(domains)

Architecture: where non-functional decisions are cast, and
functional requirements are partitioned
Design: where functional requirements are accomplished

Architecture
(ADL)

Design
(e.g., UML)

Software Architecture: ADL Perspective
  Architecture Description Language community

agrees that Software Architecture is a set of
components and the connections among them
 Components
 Connectors
 Configurations
 Constraints

An ADL Example
System simple_cs = {

Component client = {Port send-request}
Component server = {Port receive-request}
Connector rpc = {Roles {caller, callee}}
Attachments : {client.send-request to rpc.caller;
 server.receive-request to rpc.callee}

}

client

send-request

server

receive-request

caller callee

rpc

Positive
Effects

Negative
Effects

Quality Attributes and
Architectural Strategies
   Dependability

  Interoperability

  Usability

  Performance

  Adaptability

  Cost

  Schedule

  Assurance monitoring &
control

  Layering
  Diagnostics
  Pipelining
  Architecture balance
  Parallelism
  GUI-driven
  API-driven
  Performance monitoring

& control
  Change-source hiding
  COTS/reuse-driven

Example ADLs

  Industrial
 AADL
 SysML
 xADL
 UML 2.0
 MetaH (Honeywell)

  Academic
 ACME (CMU/USC)
 Wright (CMU)
 Unicon (CMU)
 Aesop (CMU)
 Rapide (Stanford)
 SADL (SRI)
 C2 SADL (UCI)
 Lileanna
 Modechart

ADL Upsides
  ADLs represent a formal way of

representing architecture

  ADLs are intended to be both
human and machine readable

  ADLs support describing a
system at a higher level than
previously possible

  ADLs permit analysis of
architectures – completeness,
consistency, ambiguity, and
performance

  ADLs can support automatic
generation of software systems

ADL Downsides
  Still disagreement on what ADLs

should represent, particularly in
the behavior aspects

  Representations sometimes
difficult to parse and limited
support by commercial tools

  Most ADL work today has been
undertaken with academic rather
than commercial goals in mind

  Most ADLs tend to be very
vertically optimized toward a
particular kind of analysis

Approaches to Architecture
Academic Approach
  Focus on analytic

evaluation of
architectural models

  Individual models
  Rigorous modeling

notations
  Powerful analysis

techniques
  Depth over breadth
  Special-purpose

solutions

Industrial Approach
  Focus on wide range of

development issues

  Families of models
  Practicality over rigor

  Architecture as the “big

picture” in development
  Breadth over depth
  General-purpose

solutions

Source: N. Medvidovic, USC

SAE Architecture Analysis &
Design Language (AADL) Standard

  Designed for Model-Based Engineering
 Notation for specification of runtime architecture of

real-time, embedded, fault-tolerant, secure, safety-
critical, software-intensive systems

  Fields of application:
 Avionics, Aerospace, Automotive, Autonomous

systems, Medical devices …

  Industry-driven International Standard
  www.aadl.info

Key Elements of SAE AADL Standard
  Core AADL language standard (SEI)

  Textual & graphical, precise semantics, extensible

  AADL Meta model & XMI/XML standard (SEI)
  Model interchange & tool interoperability

  UML profile for AADL
  Subset of OMG MARTE profile being defined by MARTE

  Error Model Annex as standardized extension Fault/
reliability modeling, hazard analysis

  Behavior Annex
  Externally observable behavior of components

  Programming Guidelines, Data Modeling Annexes

AADL: The Language
  Precise execution semantics for components & interactions

  Thread, process, data, subprogram, system,
  Processor, memory, bus, device, abstract component, virtual

processor, virtual bus
  Continuous signal processing & stochastic event processing

  Data, event, message communication, unqueued & queued
  Synchronous call/return, Shared data access
  End-to-End flow specifications

  Operational modes, fault tolerant configurations, levels of service
  Modes & mode transition, error model annex

  Modeling of large-scale & configurable systems
  Component variants, packaging of component classifiers, layered

systems, parameterized templates, component arrays
  Accommodation of diverse analysis needs

  User-defined properties, sublanguage extensions
AADL V2

System Type
system GPS
features
 speed_data: in data port metric_speed
 {SEI::BaseType => UInt16;};
 geo_db: requires data access real_time_geoDB;
 s_control_data: out data port state_control;

flows
 speed_control: flow path

 speed_data -> s_control_data;

properties SEI::redundancy => Dual;
end GPS;

System

GPS
speed_data

geo_db
s_control_data

{type}
extends
features
flows
properties

System Implementation
system implementation GPS.secure
subcomponents
 decoder: system PGP_decoder.basic;
 encoder: system PGP_encoder.basic;
 receiver: system GPS_receiver.basic;

connections
 c1: data port speed_data -> decoder.in;
 c2: data port decoder.out -> receiver.in;
 c3: data port receiver.out -> encoder.in;
 c4: data port encoder.out -> s_control_data;

flows
 speed_control: flow path speed_data -> c1 -> decoder.fs1
 -> c2 -> receiver.fs1 -> c3 -> decoder.fs1
 -> c4 -> s_control_data;
modes none;
properties arch::redundancy_scheme => Primary_Backup;
end GPS;

{implementation}
extends
refines type
subcomponents
calls
connections
flows
modes
properties

Bus

Processor

Some Standard Properties

 Dispatch_Protocol => Periodic;
 Period => 100 ms;
 Compute_Deadline => value (Period);
 Compute_Execution_Time => 10 ms .. 20 ms;
 Compute_Entrypoint => “speed_control”;
 Source_Text => “waypoint.java”;
 Source_Code_Size => 12 KB;

 Thread_Swap_Execution_Time => 5 us.. 10 us;
 Clock_Jitter => 5 ps;

 Allowed_Message_Size => 1 KB;
 Propagation_Delay => 1ps .. 2ps;
 Bus_Properties::Protocols => CSMA;

File containing the
application code

Code to be
executed on

dispatch

Thread

Protocols is a user
defined property

Example Graphical Specification:
Flight Manager in AADL

Navigation
Sensor

Processing

Integrated
Navigation Guidance

Processing

Flight Plan
Processing

Aircraft
Performance
Calculation

20Hz

10Hz 20Hz

5Hz

2Hz

From
Partitions

To
Partitions

Fuel Flow

Guidance

Nav
sensor
data

Nav signal
data

FP data

Performance
data

Nav
data Nav sensor

data

Nav data

FP data

Homework and Milestone Reminders
  Read Case Study Paper “SysML-based

systems engineering using a model-driven
development approach.”

 by Hans-Peter Hoffman
 To be discussed in Class next Monday
 Do assigned questions and bring document to

class
 Be prepared to discuss and even lead the

discussion
  Milestone 3: Light-Weight Transformation

Environment (see Milestone 3 assignment)
 Due by 11:55pm, Friday, April 29th, 2011.

