
CSSE 490 Model-Based
Software Engineering:
Concluding Domain

Engineering
Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Metamodels

Design a metamodel for a
model-based software
system.

  Consider Term Papers
  Introduce Object

Constraint Language (OCL)
  Action Semantics (if time)
  Domain Engineering

Q3

Write and Present a Term Paper
  Use IEEE/ACM format for the paper (template

provided on Angel)
  Include abstract, introduction, background/

related work, analysis, and conclusion (along
with references)

  Target 5-7 pages
  If you are not a strong writer, use a lot of tables

and figures to organize your work
  Use your own words - copied elements

without reference are considered plagiarism
  Paper due May 17th, 2011
  Presentation on May 19th, 2011

Topics for Term Paper
1)  Critically analyze the state of software productivity and the potential

for Model-Based Engineering to make an impact.
2)  Conduct a survey of Model-Based Engineering approaches (e.g.,

MDA/MDD, MBSE, DSL, MIC, etc.) to compare and contrast them.
3)  Survey Model-Based Engineering in other disciplines (e.g., civil,

mechanical,) comparing them with MBSE.
4)  From a macro-economic perspective, evaluate the cost-benefit of

Model-Based Engineering for software.
5)  Critically analyze advances in automatic programming from a

feasibility perspective and outline how these implications are
relevant for software today.

6)  Survey applications of “Product-Lines” to software systems and
present arguments for a Model-Based Engineering approach.

7)  Critically analyze transformation technology in the production of
Model-Based/Driven Engineering software solutions.

8)  Survey studies of Model-Driven Architecture (MDA) for the state-of
the practice and outline key criteria for success and failures.

9)  Suggest one that you would be more motivated to do!

What is needed to identify the key
reusable elements of a given
application domain?

  Again, think for 15 seconds…
  Let’s talk…

Q3 Q1

Example:
Domain
Operation
Contract
  Note Properties

that must be true
to admit a patient

  Preconditions

  Post-conditions

  Invariants

Object Constraint Language (OCL)
  OCL defines the

structure of models
expressing constraints
  Pre and post conditions,

Invariants
  OCL is a meta-model

instance of the MOF
  The OCL semantic is

defined with models
(operation without side
effect)

  OCL defined a concrete
syntax

PropertyCallExp
>

Literal
-1000

ModelPropertyCall
amount

Class

+balance
BankAccount

{context BankAccount
inv: balance > -1000
}

Constraint

Expression

ExpressionInOcl OclExpression

ModelElement

* * 1
*

**

Q2

Simple OCL Examples

  For an Airline Reservation
context Passenger::book(f : Flight)
pre: f.maxNrPassengers >
 f.passengers->size

post: f.passengers =
 f.passengers@pre->including(self)

  For Airports Served
context Airline::servesAirports() : Set(Airport)
pre: none --i.e. true
post: result = flights.destination->asSet

Dealing with Behavior

  Need common semantic base for all behaviors
  Choice of behavioral formalism driven by application

needs

Classifier

. . . Class UseCase Component

Behavior
0..1 0..*

Action Activity Statemachine Interaction

Action Semantics
  AS defines the

structure of models
expressing sequences
of actions

  AS was a meta-model
and is now completely
integrated in UML 2.0

  AS has no concrete
syntax (UML diagram)

  The semantic of AS is
not formally defined
(an RFP is published)

CreateObjectAction WriteStructuralAction

Pin

CallOperationAction

+credit()
+balance
BankAccount

cb

100 10

Q3

Action Semantics Example

  Activity Diagram with notations for various actions
  More detailed expression of actions in process

  Could also use Interaction Diagrams, State Machine

Diagrams, Pseudo-code, and the like

Q4

Recall: Domain Model Example

Map to Lower Levels

Bed Unavailable

Platform Independent Model (PIM)

Bridge Mappings: Case Notes

Some Open Source Transformers
  Generative Model Transformer (GMT)

  http://www.eclipse.org/gmt
  Eclipse project (JUUT-je prototype, UMLX 0.0)
  XMI-based (XMI+XMIàXMI, XMIàXMI, XMIàtext)

  AndroMDA

  http://www.amdromda.org
  Builds on XDoclet, uses Velocity template engine
  Takes UML XMI input and generates output using cartridges

  Current cartridges: Java, EJB, Hibernate, Struts
  Generates no business logic

  Jamda

  http://jamda.sourceforge.net
  Takes UML XMI file as input, using Jamda profile
  Java-based code generators

  Generates class definitions added to UML model before
codegen

What is a Product?

What is a Product Line?

  Again, think for 15 seconds…
  Let’s talk…

Q3 Q5

  Power of a product line lies in its
ability to leverage common
features despite necessary
variances between different
systems in the domain

  Viability of the product-line
approach depends on
predictable variances

  Entails a significant change in
mindset
 Cultural issue poses the greatest

challenge to adopting a product-
line approach

Product Line Philosophy
Use of a common
asset base

In production

Of a related set of
products

Q6

Key Product Line Concepts
Use of a Common
Asset Base

In Production

Of a Related Set of
Products

Architecture

Production Plan

Business Case

Ecosystem: Key Product Line Activities

Source: Software Engineering Institute

 Recall: A Product Family Process
Domain Engineering

Investment

Payback

Feedback"
Application Engineering

Environment"

Application Engineering

Applications Applications Applications

Domain Engineering

Domain Analysis

Domain Implementation

Analysis Document,"
Application Modeling"

"Language"
Domain Model"

Tools, Process"Application Engineering
Environment"

The Domain Model
  Conceptual Framework

 Family Definition
  Commonalities and Variabilities Among Family Members
  Common Terminology for the Family
  Abstractions for the Family

 Economic Analysis
 Application Modeling Language (AML)

  Language for stating requirements

  Mechanism for translating from AML to Code
 Alternative 1: Compiler
 Alternative 2: Composer

Q7

Building the Conceptual Framework
  Qualify the Domain

  Is it economically viable?

  Define the Decision Model
  How to identify a family member?

  Define Family of Products
  What do family members of have in

common and how do they vary?

  Design Application Modeling Language
  What is a good way to model a family member?

  Design Application Engineering Environment
  What are good mechanisms for using the decision model and

the Application Modeling Language?

Defining Family: Commonality Analysis
  Dictionary of terms

  Terms that define a domain vocabulary
  Commonalities: Assumptions that

hold for every member of the family
  E.g., Every unit must be in 1 of the 4

primary conditions
  Variabilities: Assumptions that define

the range of variation for the family
  E.g., Some unit names have inhibit states

  Parameters of Variation:
Quantification of the variabilities
  E.g., Whether or not a unit name can

have an inhibit state: Boolean

26

Reusable Assets

  Validations
 E.g., checkers for unit types

  Realizations
 E.g., generic algorithms for

every unit type
  Relationships

 E.g., data that is used to
drive the generic algorithms

 E.g., design information
shared across development

Homework and Milestone Reminders
  Read Chapter 8 on Domain Architectures
  Term Paper Proposal (see Homeowork assignment)

  Select topic (justify if not in list)
  Provide a descriptive Title
  Provide a short description of your topic

  Provide a “going in position” or “stand” regarding what you want to
convey or learn.

  Outline the major controversial issues or trade-offs inherent in the topic
(bullets are acceptable).

  The proposal should be no longer than one page (not
including cover page J).

  Due by 9:00am Monday Morning, April 25th, 2011.
  Milestone 3: Early Transformation Environment (see

Milestone 3 assignment)
  Due by 11:55pm, Friday, April 29th, 2011.

