
CSSE 490 Model-Based
Software Engineering:

Introduction to Domain
Engineering

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Metamodels

Design a metamodel for a
model-based software
system.

  Exam Discussion
  Milestone 2 Demo
  Looking closer at Mapping
  Introduce Object

Constraint Language (OCL)
  Action Semantics (if time)
  Introduce Domain Eng.

Q3

Midterm Stats
  Average Score = 85.6
  High Score = 90
  Low Score = 77

  Grade allocations
 A => 88-100
 B+ => 85-87
 B => 79-84
 C+ => 75-78

LET’S DEMO!
Milestone #2

What is the difference between
conventional Software Engineering
and Model Based Software
Engineering?

  Again, think for 15 seconds…
  Let’s talk…

Q3

Conventional and MBSE
Conventional
Software Engineering

Model-Based Engineering

Requirements Analysis
Produces requirements for one
system

Domain Analysis
Produces reusable,
configurable requirements for a
class of systems

System Design
Produces design of one system

Design
Produces reusable design for a
class of systems and a
production plan

System Implementation
Produces system
implementation

Implementation
Produces reusable
components, infrastructure and
production process

Abstraction Gaps Bain of Mapping

Machine Code

Level of
Abstraction

Generators

Machine Code with Operating System

3GL with Operating System

3GL with Middleware

Middleware
with Framework

A
b

s t
 r

a c
 t

i o
 n

 G
 a

p

Abstraction or Refinement?
  Mapping techniques between two

metamodels often formulate

1.  An abstraction (leading to more abstract
metamodels) or

2.  A refinement (leading to more detailed
metamodels)

  Hence, one metamodel is sometimes called
an abstraction or a refinement of the other
  When do we call a mapping a refinement?
  When do we call it an abstraction?

Definitions: Refinement

  Let A and B be two metamodels

  B is said to be a refinement of A if

a "reasonable" (semantic-preserving)

“surjective” mapping technique
(or mapping in the algebraic sense)

from A to B cannot be provided

Refinement Mapping

Definitions: Abstraction

  Let A and B be two metamodels

  B is said to be an abstraction of A if

a "reasonable" (semantic-preserving)
surjective and non-injective mapping technique
(or mapping in the algebraic sense)

from A to B can be provided

A matter of perspective 

Mapping Models

MappingTechnique

PlatformMetamodel

1..n 0..11..n

+describes

0..1
Model 11instance_of

1
+target
11..n

+source

1..n

Mapping

1
+target
11..n

+source
1..n

11

application_of

Multiple mappings may be applied successively in a chain

Models, Metamodels, & Platform Stack

0..1
Model

PrimitiveRealization

Metamodel11instance_of

PlatformRealization

ComposedRealization

Platform
1..n 0..11..n

+describes

1..n+realizedOn 1..n

1..n1..n

implemented_withStandards:
 - CORBA
 - J2EE
 - .NET
 - Linux
 - Windows

Standards:
- UML
- standardized
 UML profiles
- XMI
- Programming
 Languages

Standard:
- MOF

Formal: Mapping Techniques

Model

Model

0..n

0..1

+represent ingModel 0..n

+representedModel 0..1

Metamodel
0..1

+abstractSyntax

0..1conforms_to

Metamodel
0..1

+abstractSyntax

0..1conforms_to

MappingTechnique

0..n

1..n

+targetMappingTechnique0..n

+source1..n

+target

+sourceMappingTechnique0..n

1

0..n

1

renders

Example: UML Profile

Annotations for Specific Mapping Techniques

Mapping MappingTechni que
1

+mappingTechnique

1application_of

Model

1..n

0..n

+source
1..n

+targetMapping
0..n

1

0..n

+target 1

+sourceMapping
0..n

Annotation

0..n

+model

+annotation
0..n

0..n

0..n

+requiredAnnotation 0..n

+requiringMapping
0..n

0..n

0..n

+providedAnnotation
0..n

+providingMapping
0..n

Metamodel

1..n

0..n

+source
1..n

+targetMappingTechnique0..n

1

0..n

+target
1

+sourceMappingTechnique 0..n

0..1
+abstractSyntax

0..1conforms_to

Annotat ionModel

0..n

0. .n

+requiredAnnotationModel
0..n

+requi ringMappingTechnique 0..n

0..n

0..n

+providedAnnotationModel0..n

+providingMappingTechnique
0..n

1

+annotationModel

1instance_of

0..*0..*

+annotationModel

+metamodel

Example: Record of
the transformation

“Analysis” is to “Design”
as “Domain” is to _________?

  Again, think for 15 seconds…
  Let’s talk…

 Where is Domain Engineering?
Domain Engineering

Investment

Payback

Feedback"
Application Engineering

Environment"

Application Engineering

Applications Applications Applications

Example: Domain Context

Example: Interactions in Domain

Example:
Domain
Operation
Contract
  Note Properties

that must be true
to admit a patient

  Preconditions

  Post-conditions

  Invariants

Object Constraint Language (OCL)
  OCL defines the

structure of models
expressing constraints
  Pre and post conditions,

Invariants
  OCL is a meta-model

instance of the MOF
  The OCL semantic is

defined with models
(operation without side
effect)

  OCL defined a concrete
syntax

PropertyCallExp
>

Literal
-1000

ModelPropertyCall
amount

Class

+balance
BankAccount

{context BankAccount
inv: balance > -1000
}

Constraint

Expression

ExpressionInOcl OclExpression

ModelElement

* * 1
*

**

Dealing with Behavior

  Need common semantic base for all behaviors
  Choice of behavioral formalism driven by application

needs

Classifier

. . . Class UseCase Component

Behavior
0..1 0..*

Action Activity Statemachine Interaction

Action Semantics
  AS defines the

structure of models
expressing sequences
of actions

  AS was a meta-model
and is now completely
integrated in UML 2.0

  AS has no concrete
syntax (UML diagram)

  The semantic of AS is
not formally defined
(an RFP is published)

CreateObjectAction WriteStructuralAction

Pin

CallOperationAction

+credit()
+balance
BankAccount

cb

100 10

Homework and Milestone Reminders

  Milestone 2: Establish a repository and structure for
assembling components for your FacePamphlet
application
  Due by 1:35pm Today, April 11th, 2011

  Case Study/Homework: “UML 2: A model-driven

development tool” by B. Selic
  Be prepared to discuss and even lead the discussion
  Write a brief summary of observations on the paper based on

assignment (on Angel)
  Due by 1:35pm Tuesday, April 12th, 2011

Representing Models: Some Examples

Programmatically
Accessible

Representation

Editable

Metamodels

UML textual
notation syntax

UML textual
notation syntax

UML Profile
for JSR 26

UML Profile for
"EJB Compact Bean"

Java Syntax

EJB Compact
Bean

EJB Expanded
Bean (JSR 26)

UML

ASCII

UML

ASCII

ASCII

UML Graphical
Notation

Java Abstract
Syntax Tree

UML Graphical
Notation

Bridge Mappings: Case Notes

Example: Domain Model

Map to Lower Levels

Platform Independent Model (PIM)

Some Open Source Transformers
  Generative Model Transformer (GMT)

  http://www.eclipse.org/gmt
  Eclipse project (vaporware, JUUT-je prototype, UMLX 0.0)
  XMI-based (XMI+XMIàXMI, XMIàXMI, XMIàtext)

  AndroMDA

  http://www.amdromda.org
  Builds on XDoclet, uses Velocity template engine
  Takes UML XMI input and generates output using cartridges

  Current cartridges: Java, EJB, Hibernate, Struts
  Generates no business logic

  Jamda

  http://jamda.sourceforge.net
  Takes UML XMI file as input, using Jamda profile
  Java-based code generators

  Generates class definitions added to UML model before
codegen

But what about Assembly?

Component

Sub-Component

System

33

  Power of a product line lies in its
ability to leverage common
features despite necessary
variances between different
systems in the domain

  Viability of the product-line
approach depends on
predictable variances

  Entails a significant change in
mindset
 Cultural issue poses the greatest

challenge to adopting a product-
line approach

Product Line Philosophy Use of a common
asset base

In production

Of a related set of
products

34

Key Product Line Concepts
Use of a Common
Asset Base

In Production

Of a Related Set of
Products

Architecture

Production Plan

Business Case

35

Ecosystem: Key Product Line
Activities

Source: Software Engineering Institute

 A FAST Process
Domain Engineering

Investment

Payback

Feedback"
Application Engineering

Environment"

Application Engineering

Applications Applications Applications

37

Domain Engineering

Domain Analysis

Domain Implementation

Analysis Document,"
Application Modeling"

"Language"
Domain Model"

Tools, Process"Application Engineering
Environment"

38

The Domain Model
  Conceptual Framework

 Family Definition
  Commonalities and Variabilities Among Family Members
  Common Terminology for the Family
  Abstractions for the Family

 Economic Analysis
 Application Modeling Language (AML)

  Language for stating requirements

  Mechanism for translating from AML to Code
 Alternative 1: Compiler
 Alternative 2: Composer

39

Building The Conceptual
Framework   Qualify The Domain

  Is it economically viable?
  Define The Decision Model

  What decisions must be made to identify a family member?
  Define The Family

  What do members of the family have in common and how do
they vary?

  Design The Application Modeling Language
  What is a good way to model a family member?

  Design The Application Engineering Environment
  What are good mechanisms for using the decision model and

the Application Modeling Language?

40

Defining The Family: Commonality
Analysis

  Dictionary of terms
  Technical terms that define a vocabulary for the domain

  Primary Condition: The availability of a unit: working:
ready, unready, or unusable

  Commonalities: Assumptions that hold for every
member of the family
  Every unit must be in one of the four primary conditions.

  Variabilities: Assumptions that define the range of
variation for the family
  Some unit names have inhibit states.

  Parameters of Variation: Quantification of the
variabilities
  Whether or not a unit name can have an inhibit state:

Boolean

41

Reusable Assets

  Validations -- generic algorithms for every
unit type

  Realizations -- generic algorithms for
every unit type

  Relationships
 data that is used to drive the generic

algorithms
 design information shared across

development

Case Study/Homework:

“UML 2: A model-driven
development tool”
 by Bran Selic

  What are the alternatives?
  How hard are they to

implement?
  Is there support from the

community?

MOF Action Semantics
  EMF has limited Behavioral

Modeling support
  Action semantics capture the

behavior of a model
(i.e., how the model behaves)

  Actions semantics has been
proposed for UML 2.0.
 Variants appear in Executable UML

  Let’s talk more about Action
semantics and Object Constraint
Language (OCL) on Monday

