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Learning Outcomes: Metamodels 

Design a metamodel for a 
model-based software 
system.  
 
  Contrast DSLs with 

compilers 
  Examine Benefits and 

Risks of DSL Approaches 
  Introduce Eclipse Modeling 

Framework (EMF) 
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“GPL” is to a “Compiler”  
as DSL is to a(n) _________? 

  Again, think for 15 seconds… 
  Let’s talk… 
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Checking Correctness 
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What are some of the benefits of 
DSLs? 
What are some of the Risks? 

  Again, think for 15 seconds… 
  Let’s talk… 

Q3 



Benefits of using DSLs 

  Expressiveness: DSLs allow 
solutions to be expressed in the 
idiom and at the level of 
abstraction of the problem 
domain 
 

  Reusability: DSL programs are 
concise, and can be reused for 
different purposes 
 

  DSLs  enhance  productivity,  
reliability,  maintainability, 
portability, and testability 
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Risks of using DSLs 

  Costs shift towards 
 Designing, implementing and 

maintaining DSLs  
 

  Language issues  
 Limited availability of DSLs 

 
  Issues in practice 

 Potential loss of efficiency 
  Integrating various DSLs is difficult 
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Example Implementation Approaches 1/3 
[Kosar98] 
  Macro processing, lexical 

processing, source-to-
source transformation, 
pipeline 
 Pros: easy in implementation 
 Cons: absence of semantic 

analysis; problematic error 
reporting 

  Embedding/Internal 
 Pros:  Reused compiler/

interpreter 
 Cons: Limited 

expressiveness; problematic 
error reporting 



Example Implementation Approaches 2/3 
[Kosar98] 
  Compiler/interpreter 

 Pros:  Ability to domain-level 
optimization, analysis 

 Cons: High building cost 
 

  Compiler generator 
 Pros:  Ability to domain-level 

optimization, analysis with 
minimized building efforts 

 Cons: still, implementing 
compiler is hard  even if 
compiler generator are used 



Example Implementation Approaches 3/3 
[Kosar98] 
  Extensible compiler/

interpreter 
 Pros:  Reused compiler with  

minimized effort 
 Cons:  Extreme caution to 

prevent interference 



  Most programs manipulate some data model 
  It might be defined using Java, UML, XML 

Schemas, or some other definition language 
 

  EMF extracts this intrinsic "model" and 
generates some of the implementation code  
 Can be a tremendous productivity gain 

 
  EMF is one implementation of MOF 

 Not EMF = MOF 

Eclipse Modeling Framework (EMF) 
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 Specification of an application’s data 
 Object attributes 
 Relationships (associations) between 

objects 
 Operations available on each object 
 Simple constraints (e.g., multiplicity) on 

objects and relationships 
 

 Essentially the Class  
Diagram subset of UML 

EMF Model Definition 1/2 



  EMF models can be defined in three ways:  
1. Java interfaces 
2. UML Class Diagram 
3. XML Schema 

 
  Choose the one matching your perspective or 

skills, and EMF can generate the others as 
well as the implementation code 

EMF Model Definition  2/2 
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PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF Model Definition:  
UML class diagrams 



public interface PurchaseOrder { 
  String getShipTo(); 
  void setShipTo(String value); 
  String getBillTo(); 
  void setBillTo(String value); 
  List getItems(); // List of Item 
} 
 
public interface Item { 
  String getProductName(); 
  void setProductName(String value); 
  int getQuantity(); 
  void setQuantity(int value); 
  float getPrice(); 
  void setPrice(float value); 
} 

EMF Model Definition: Java Interfaces 



<xsd:complexType name="PurchaseOrder"> 
 <xsd:sequence> 
  <xsd:element name="shipTo" type="xsd:string"/> 
  <xsd:element name="billTo" type="xsd:string"/> 
  <xsd:element name="items"  type="PO:Item"  
               minOccurs="0" maxOccurs="unbounded"/> 
 </xsd:sequence> 
</xsd:complexType> 
 
<xsd:complexType name="Item"> 
 <xsd:sequence> 
  <xsd:element name="productName" type="xsd:string"/> 
  <xsd:element name="quantity" type="xsd:int"/> 
  <xsd:element name="price" type="xsd:float"/> 
 </xsd:sequence> 
</xsd:complexType> 

EMF Model Definition - XML 



Unifying Java, XML, and UML  

  All three forms provide the same information 
 Different visualization/representation 
 The application’s “model” of the structure 

 
  From a model definition, EMF can generate: 

 Java implementation code, including UI 
 XML Schemas 
 Eclipse projects and plug-ins 
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EMF Architecture: 
Model Import and Generation 

I 
M 
P 
O 
R 
T 

GENERATE 

Ecore 
Model 

UML 

XML 
Schema 

Java 
model 

Java 
edit 

Generator features: 
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templates (JET) 
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  Ecore is EMF’s Metamodel (model of a model) 
 Persistent representation is XMI 

EMF Architecture - Ecore 
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EMF Architecture - 
PurchaseOrder Ecore Model 
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<eClassifiers xsi:type="ecore:EClass" 
  name="PurchaseOrder"> 
 <eReferences name="items" eType="#//Item"  
   upperBound="-1" containment="true"/> 
 <eAttributes name="shipTo"  
   eType="ecore:EDataType http:...Ecore#//EString"/> 
 <eAttributes name="billTo"  
   eType="ecore:EDataType http:...Ecore#//EString"/> 
</eClassifiers> 

EMF Architecture - 
PurchaseOrder Ecore XMI 

  Alternate serialization format is EMOF 
 Part of MOF 2.0 Standard 



EMF Dynamic Architecture 

  Given an Ecore model, EMF also supports 
dynamic manipulation of instances 
 No generated code required 
 Dynamic implementation of reflective EObject API 

provides same runtime behavior as generated code 
 Also supports dynamic subclasses of generated 

classes 
 

  All EMF model instances, whether generated 
or dynamic, are treated the same by the 
framework 



public String getShipTo() { 
  return shipTo; 
} 
 
public void setShipTo(String newShipTo) { 
  String oldShipTo = shipTo; 
  shipTo = newShipTo; 
  if (eNotificationRequired()) 
    eNotify(new ENotificationImpl(this, ... ); 
} 

Code Generation - Feature Change 

  Efficient notification from “set” methods 
 Observer Design Pattern 



public interface EObject { 
  Object eGet(EStructuralFeature f); 
  void eSet(EStructuralFeature f, Object v); 
  ... 
} 

Code Generation 

  All EMF classes implement interface Eobject 
 

  Provides an efficient API for manipulating 
objects reflectively 
 Used by the framework (e.g., generic serializer, copy 

utility, generic editing commands, etc.) 
 Also key to integrating tools and applications built 

using EMF 



Short Discussion/Exercise:  

How would you add behaviors  
to a declarative representation 
like that seen in EMF? 

  What are the alternatives? 
  How hard are they to  

implement? 
  Is there support from the 

community? 



MOF Action Semantics  
  EMF has limited Behavioral 

Modeling support 
  Action semantics capture the 

behavior of a model  
(i.e., how the model behaves) 

  Actions semantics has been 
proposed for UML 2.0. 
 Variants appear in Executable UML 

  Let’s talk more about Action 
semantics and Object Constraint 
Language (OCL) on Monday 



Homework and Milestone Reminders 

  Case Study/Homework:  “UML 2: A model-driven 
development tool” by B. Selic 
  Be prepared to discuss and even lead the discussion 
  Write a brief summary of observations on the paper based on 

assignment (on Angel) 
 

  Milestone 2: Establish a repository and structure for 
assembling components for your FacePamphlet 
application 
  Due by 11:55pm Friday, April ??? 1st, 2011 


