T

CSSE 490 Model-Based

Software Engineering:
Even More on Domain
Specific Languages ©

Shawn Bohner

Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

o

Learning Outcomes: Metamodels

Design a metamodel for a
model-based software
system.

m Contrast DSLs with
compilers

s Examine Benefits and
Risks of DSL Approaches

m Introduce Eclipse Modeling
Framework (EMF)

M3 level
Meta-metamodel

x

I,
| nstance-of
I

M2 level
Metamodel

r

instance-of

M1 level
User-defined model

r

I,
| nstance-of
I

MO level
Object diagram

TTTTTTTTTTTTTTTTTTTTT

“GPL” is to a “Compiler”
as DSL is to a(n)

m Again, think for 15 seconds...
m Let’s talk...

TTTTTTTTTTTTTTTTTTTTT

Traditional Compilers

Compiler

- J

TTTTTTTTTTTTTTTTTTTTT

Using a Domain Specific Language

Compiler

,i i iii[l‘ ,.tﬁi ,wo o ,. nEi '. Cejel) l

TTTTTTTTTTTTTTTTTTTTT

Using a Domain Specific Language

Compiler

DSL Execution Engine

QROSE-HULMAN Q1

TTTTTTTTTTTTTTTTTTTTT

Checking Correctness

Compiler

DSL Execution Engine

TP, T, LT

Opt Opt Opt
| I

ety

i
XVXV XV

C00e

/

TTTTTTTTTTTTTTTTTTTTT

Checking Correctness

w
o O O

@

vV X Vv

by

Checking Correctness

| Checker

Checker

TTTTTTTTTTTTTTTTTTTTT

=

Correctness Checker

\erification
Condition
(VC)

Automatic
Theorem

Prover

Q2

A

Correctness Checker

DSL Optimization
L v .) (i antorn.. }+
Checker T
v Local VCs

Correctness

l l’ optimiz"é'tib':r’i':‘-..,n
| “independent fj:;i@
Automatic Theorem Prover

X v

TTTTTTTTTTTTTTTTTTTTT

I ' What are some of the benefits of
DSLs?

What are some of the Risks? —

m Again, think for 15 seconds...
m Let’s talk...

ROSE-HULMAN Q3

TTTTTTTTTTTTTTTTTTTTT

Benefits of using DSLs

m Expressiveness: DSLs allow
solutions to be expressed in the
idiom and at the level of
abstraction of the problem
domain

m Reusability: DSL programs are
concise, and can be reused for
different purposes

m DSLs enhance productivity,
reliability, maintainability,
portability, and testability

TTTTTTTTTTTTTTTTTTTTT

Q3

Risks of using DSLs

m Costs shift towards

0 Designing, implementing and
maintaining DSLs

m Language issues
O Limited availability of DSLs

m Issues In practice
1 Potential loss of efficiency
O Integrating various DSLs is difficult

TTTTTTTTTTTTTTTTTTTTT

Q4

L

Example Implementation Approaches 1/3
m Macro processing, lexical

processing, source-to- MOF
source transformation,
pipeline °‘T’L °TL
O Pros: easy in implementation -, Y
[0 Cons: absence of semantic mode! mode
analysis; problematic error - cu Geneic Objsct Editor
re pO rti n g P > DSL Edncr. Interface Editors
| Embeddingllnternal Variability Edulor' CVL Enabled Edutor‘s
00 Pros: Reused compiler/ Resolution Editor Analyzers
i nte rp rete r Transformations —

Code Generators

0 Cons: Limited
expressiveness; problematic
error reporting

TTTTTTTTTTTTTTTTTTTTT

L

Example Implementation Approaches 23

m Compiler/interpreter

g . MOF
O Pros: Ability to domain-level _, (Ecom)
optimization, analysis cvL psL
1 Cons: High building cost 1 !
cv . domain
model| ' maodel
= Compiler generator ------>| CVL Generic Object Etor
0 Pros: Ability to domain-level |- DstEderiedcs o
optimization, analysis With Varlability Editor CVL Enabled Editors
minimized building efforts Resolution Editor Analyzers
Transformations
0 Cons: still, implementing Transformations oy ———

compiler is hard even if
compiler generator are used

TTTTTTTTTTTTTTTTTTTTT

—

Example Implementation Approaches 3/3

m Extensible compiler/

- MOF
interpreter | Ecow
0 Pros: Reused compiler with cvL DSL
minimized effort ! !
. cvL . domain
0 Cons: Extreme caution to model " model
prevent interference g > CVL Generic Object Editor

--> DSL Editor Interface Editors

r T :
Variability Editor CVL Enabled Editors

Rescluticn Editor Analyzers

Transformations

Transformations
Code Generators

INSTITUTE OF TECHNOLOGY

Eclipse Modeling Framework (EMF)

m Most programs manipulate some data model

O It might be defined using Java, UML, XML
Schemas, or some other definition language

m EMF extracts this intrinsic "model"” and
generates some of the implementation code

0 Can be a tremendous productivity gain

= EMF is one implementation of MOF
0 Not EMF = MOF N

&demf

ECLIPSE MODELING FRAMEWORK

ROSE-HULMAN Q5

TTTTTTTTTTTTTTTTTTTTT

EMF Model Definition 1/2

m Specification of an application’ s data
[10bject attributes

[1Relationships (associations) between
objects

[1Operations available on each object

O0Simple constraints (e.g., multiplicity) on
objects and relationships
?¢.~

®
m Essentially the Class ‘\i‘é e mf

Diagram SUbSEt Of UML ECLIPSE MODELING FRAMEWORK

TTTTTTTTTTTTTTTTTTTTT

EMF Model Definition 22

= EMF models can be defined in three ways:
1.Java interfaces
2.UML Class Diagram
3. XML Schema

m Choose the one matching your perspective or
skills, and EMF can generate the others as

well as the implementation code
s@s

emf

ECLIPSE MODELING FRAMEWORK

ROSE-HULMAN Q6

TTTTTTTTTTTTTTTTTTTTT

EMF Model Definition:

UML class diagrams

PurchaseOrder d tNItem Stri
_ : i roductName : Strin
shipTo : String P tems guantity - =t)
billTo : String 0.~ [

TTTTTTTTTTTTTTTTTTTTT

—

EMF Model Definition: Java Interfaces

public interface PurchaseOrder ({
String getShipTo() ;
void setShipTo (String wvalue) ;
String getBillTo() ;
void setBillTo(String wvalue) ;
List getItems(); // List of Item

}

public interface Item {
String getProductName () ;
void setProductName (String wvalue) ;
int getQuantity() ;
void setQuantity (int value);
float getPrice();
void setPrice (float wvalue) ;

INSTITUTE OF TECHNOLOGY

MF Model Definition - XML

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
<xsd:element name="shipTo" type="xsd:string"/>
<xsd:element name="billTo" type="xsd:string"/>
<xsd:element name="items" type="PO:Item"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">

<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="price" type="xsd:float"/>
</xsd:sequence>

</xsd:complexType>

INSTITUTE OF TECHNOLOGY

- —

Unifying Java, XML, and UML

m All three forms provide the same information
O Different visualization/representation
00 The application’ s “model” of the structure

= From a model definition, EMF can generate:

0 Java implementation code, including Ul
O XML Schemas

0 Eclipse projects and plug-in N

emf

ECLIPSE MODELING FRAMEWORK

ROSE-HULMAN Q7

NNNNNNNNNNNNNNNNNNNNN

EMF Architecture:
Model Import and Generation

Generator features:

m Customizable
JSP-like
templates (JET)

m Command-line
or integrated
with Eclipse JDT

m Fully supports
regeneration
and merge

model

* requires Eclipse to run

EMF Architecture - Ecore

m Ecore is EMF’ s Metamodel (model of a model)
00 Persistent representation is XMi

eSuperTypes
0 EAttribute eAttributeType EDataTy;?e
3 eAttributes |name : String 1 > name : String
EClass > 0. * >
: Stri)
name nng eReferences EReference
A > 0.* _|name: String
"~ |containment : boolean
1 | eReferenceType lowerBound : int
upperBound : int

N
eOpposite | 0..1

INSTITUTE OF TECHNOLOGY

I EMF Architecture -
PurchaseOrder Ecore Model

EClass EClass
(name="PurchaseOrder") (name="ltem")

@ . @

/ l \ eReferenceType /

EAttribute EAttribute EReference EAttribute
(name="shipTo") (name="billTo") (name="items") (name="productName")

TTTTTTTTTTTTTTTTTTTTT

‘ EMF Architecture -
PurchaseOrder Ecore XMi

<eClassifiers xsi:type="ecore:EClass"
name="PurchaseOrder">

<eReferences name="items" eType="#//Item"
upperBound="-1" containment="true"/>
<eAttributes name="shipTo"

eType="ecore:EDataType http:...Ecore#//EString" />
<eAttributes name="billTo"

eType="ecore:EDataType http:...Ecore#//EString" />
</eClassifiers>

m Alternate serialization format is EMOF
1 Part of MOF 2.0 Standard

INSTITUTE OF TECHNOLOGY

L

EMF Dynamic Architecture

m Given an Ecore model, EMF also supports
dynamic manipulation of instances
0 No generated code required

0 Dynamic implementation of reflective EObject API
provides same runtime behavior as generated code

0 Also supports dynamic subclasses of generated
classes

m All EMF model instances, whether generated
or dynamic, are treated the same by the
framework

TTTTTTTTTTTTTTTTTTTTT

. —

Code Generation - Feature Change

m Efficient notification from “set” methods
0 Observer Design Pattern

public String getShipTo () {
return shipTo;

}

public void setShipTo (String newShipTo) {
String o0ldShipTo = shipTo;
shipTo = newShipTo,
if (eNotificationRequired())
eNotify (new ENotificationImpl (this, ...);

TTTTTTTTTTTTTTTTTTTTT

o
Code Generation
public interface EObject {

Object eCGet (EStructuralFeature f);
void eSet (EStructuralFeature £, Object v);

_—
m All EMF classes implement interface Eobject

m Provides an efficient APl for manipulating
objects reflectively

1 Used by the framework (e.g., generic serializer, copy
utility, generic editing commands, etc.)

1 Also key to integrating tools and applications built
using EMF

TTTTTTTTTTTTTTTTTTTTT

. —

Short Discussion/Exercise:

How would you add behaviors
to a declarative representation
like that seen in EMF? O

m What are the alternatives?

m How hard are they to
implement?

m Is there support from the
community?

TTTTTTTTTTTTTTTTTTTTT

MOF Action Semantics

m EMF has limited Behavioral
Modeling support

m Action semantics capture the
behavior of a model
(i.e., how the model behaves)

m Actions semantics has been
proposed for UML 2.0.

0 Variants appear in Executable UML
m Let’s talk more about Action

semantics and Object Constraint
Language (OCL) on Monday

' Class1

5

TTTTTTTTTTTTTTTTTTTTT

Homework and Milestone Reminders

m Case Study/Homework: “UML 2: A model-driven
development tool” by B. Selic
0 Be prepared to discuss and even lead the discussion

O Write a brief summary of observations on the paper based on
assignment (on Angel)

m Milestone 2: Establish a repository and structure for
assembling components for your FacePamphlet
application

0 Due by 11:55pm Friday, April ??? 4st, 2011

OOOOOOOOOOOOOOOOOOOOO

