
CSSE 490 Model-Based
Software Engineering:

Even More on Domain
Specific Languages 

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Metamodels

Design a metamodel for a
model-based software
system.

  Contrast DSLs with

compilers
  Examine Benefits and

Risks of DSL Approaches
  Introduce Eclipse Modeling

Framework (EMF)

Q3

“GPL” is to a “Compiler”
as DSL is to a(n) _________?

  Again, think for 15 seconds…
  Let’s talk…

Traditional Compilers

Parser

Compiler

Opt Opt Opt
Code
Gen

Using a Domain Specific Language

Parser

Compiler

DSL
Opt

DSL
Opt

DSL
Opt

Code
Gen

Using a Domain Specific Language

Parser

Compiler

Code
Gen

DSL Execution Engine

DSL
Opt

DSL
Opt

DSL
Opt

Q1

Checking Correctness

Parser

Compiler

Code
Gen

DSL Execution Engine

DSL
Opt

DSL
Opt

DSL
Opt

Checker Checker Checker

DSL
Opt

Parser Code
Gen

Compiler

DSL Execution engine

Checker

DSL
Opt

Checker

DSL
Opt

Checking Correctness

Checker

Checker
DSL
Opt

Checking Correctness

Checker

VC Generator

Verification
Condition
(VC)

Correctness Checker

Checker Checker

DSL
Opt

Automatic
Theorem
Prover

Q2

Correctness Checker

Automatic Theorem Prover

DSL Optimization

Checker

optimization-
independent

define
fact …

if …
then transform …

if …
then …

Validation Condition Generator
Local VC Local VC

Lemma:
Local VCs
Correctness

What are some of the benefits of
DSLs?
What are some of the Risks?

  Again, think for 15 seconds…
  Let’s talk…

Q3

Benefits of using DSLs

  Expressiveness: DSLs allow
solutions to be expressed in the
idiom and at the level of
abstraction of the problem
domain

  Reusability: DSL programs are
concise, and can be reused for
different purposes

  DSLs enhance productivity,
reliability, maintainability,
portability, and testability

Q3

Risks of using DSLs

  Costs shift towards
 Designing, implementing and

maintaining DSLs

  Language issues
 Limited availability of DSLs

  Issues in practice

 Potential loss of efficiency
  Integrating various DSLs is difficult

Q4

Example Implementation Approaches 1/3
[Kosar98]
  Macro processing, lexical

processing, source-to-
source transformation,
pipeline
 Pros: easy in implementation
 Cons: absence of semantic

analysis; problematic error
reporting

  Embedding/Internal
 Pros: Reused compiler/

interpreter
 Cons: Limited

expressiveness; problematic
error reporting

Example Implementation Approaches 2/3
[Kosar98]
  Compiler/interpreter

 Pros: Ability to domain-level
optimization, analysis

 Cons: High building cost

  Compiler generator
 Pros: Ability to domain-level

optimization, analysis with
minimized building efforts

 Cons: still, implementing
compiler is hard even if
compiler generator are used

Example Implementation Approaches 3/3
[Kosar98]
  Extensible compiler/

interpreter
 Pros: Reused compiler with

minimized effort
 Cons: Extreme caution to

prevent interference

  Most programs manipulate some data model
  It might be defined using Java, UML, XML

Schemas, or some other definition language

  EMF extracts this intrinsic "model" and
generates some of the implementation code
 Can be a tremendous productivity gain

  EMF is one implementation of MOF

 Not EMF = MOF

Eclipse Modeling Framework (EMF)

Q5

 Specification of an application’s data
 Object attributes
 Relationships (associations) between

objects
 Operations available on each object
 Simple constraints (e.g., multiplicity) on

objects and relationships

 Essentially the Class
Diagram subset of UML

EMF Model Definition 1/2

  EMF models can be defined in three ways:
1. Java interfaces
2. UML Class Diagram
3. XML Schema

  Choose the one matching your perspective or

skills, and EMF can generate the others as
well as the implementation code

EMF Model Definition 2/2

Q6

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF Model Definition:
UML class diagrams

public interface PurchaseOrder {
 String getShipTo();
 void setShipTo(String value);
 String getBillTo();
 void setBillTo(String value);
 List getItems(); // List of Item
}

public interface Item {
 String getProductName();
 void setProductName(String value);
 int getQuantity();
 void setQuantity(int value);
 float getPrice();
 void setPrice(float value);
}

EMF Model Definition: Java Interfaces

<xsd:complexType name="PurchaseOrder">
 <xsd:sequence>
 <xsd:element name="shipTo" type="xsd:string"/>
 <xsd:element name="billTo" type="xsd:string"/>
 <xsd:element name="items" type="PO:Item"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:int"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

EMF Model Definition - XML

Unifying Java, XML, and UML

  All three forms provide the same information
 Different visualization/representation
 The application’s “model” of the structure

  From a model definition, EMF can generate:

 Java implementation code, including UI
 XML Schemas
 Eclipse projects and plug-ins

Q7

EMF Architecture:
Model Import and Generation

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Generator features:
  Customizable

JSP-like
templates (JET)

  Command-line
or integrated
with Eclipse JDT

  Fully supports
regeneration
and merge

Java
editor* * requires Eclipse to run

Java
model

  Ecore is EMF’s Metamodel (model of a model)
 Persistent representation is XMI

EMF Architecture - Ecore

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

EMF Architecture -
PurchaseOrder Ecore Model

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

<eClassifiers xsi:type="ecore:EClass"
 name="PurchaseOrder">
 <eReferences name="items" eType="#//Item"
 upperBound="-1" containment="true"/>
 <eAttributes name="shipTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
 <eAttributes name="billTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
</eClassifiers>

EMF Architecture -
PurchaseOrder Ecore XMI

  Alternate serialization format is EMOF
 Part of MOF 2.0 Standard

EMF Dynamic Architecture

  Given an Ecore model, EMF also supports
dynamic manipulation of instances
 No generated code required
 Dynamic implementation of reflective EObject API

provides same runtime behavior as generated code
 Also supports dynamic subclasses of generated

classes

  All EMF model instances, whether generated
or dynamic, are treated the same by the
framework

public String getShipTo() {
 return shipTo;
}

public void setShipTo(String newShipTo) {
 String oldShipTo = shipTo;
 shipTo = newShipTo;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, ...);
}

Code Generation - Feature Change

  Efficient notification from “set” methods
 Observer Design Pattern

public interface EObject {
 Object eGet(EStructuralFeature f);
 void eSet(EStructuralFeature f, Object v);
 ...
}

Code Generation

  All EMF classes implement interface Eobject

  Provides an efficient API for manipulating
objects reflectively
 Used by the framework (e.g., generic serializer, copy

utility, generic editing commands, etc.)
 Also key to integrating tools and applications built

using EMF

Short Discussion/Exercise:

How would you add behaviors
to a declarative representation
like that seen in EMF?

  What are the alternatives?
  How hard are they to

implement?
  Is there support from the

community?

MOF Action Semantics
  EMF has limited Behavioral

Modeling support
  Action semantics capture the

behavior of a model
(i.e., how the model behaves)

  Actions semantics has been
proposed for UML 2.0.
 Variants appear in Executable UML

  Let’s talk more about Action
semantics and Object Constraint
Language (OCL) on Monday

Homework and Milestone Reminders

  Case Study/Homework: “UML 2: A model-driven
development tool” by B. Selic
  Be prepared to discuss and even lead the discussion
  Write a brief summary of observations on the paper based on

assignment (on Angel)

  Milestone 2: Establish a repository and structure for
assembling components for your FacePamphlet
application
  Due by 11:55pm Friday, April ??? 1st, 2011

