
CSSE 490 Model-Based
Software Engineering:

Even More on Domain
Specific Languages

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Metamodels

Design a metamodel for a
model-based software
system.

  Contrast DSLs with

compilers
  Examine Benefits and

Risks of DSL Approaches
  Introduce Eclipse Modeling

Framework (EMF)

Q3

“GPL” is to a “Compiler”
as DSL is to a(n) _________?

  Again, think for 15 seconds…
  Let’s talk…

Traditional Compilers

Parser

Compiler

Opt Opt Opt
Code
Gen

Using a Domain Specific Language

Parser

Compiler

DSL
Opt

DSL
Opt

DSL
Opt

Code
Gen

Using a Domain Specific Language

Parser

Compiler

Code
Gen

DSL Execution Engine

DSL
Opt

DSL
Opt

DSL
Opt

Q1

Checking Correctness

Parser

Compiler

Code
Gen

DSL Execution Engine

DSL
Opt

DSL
Opt

DSL
Opt

Checker Checker Checker

DSL
Opt

Parser Code
Gen

Compiler

DSL Execution engine

Checker

DSL
Opt

Checker

DSL
Opt

Checking Correctness

Checker

Checker
DSL
Opt

Checking Correctness

Checker

VC Generator

Verification
Condition
(VC)

Correctness Checker

Checker Checker

DSL
Opt

Automatic
Theorem
Prover

Q2

Correctness Checker

Automatic Theorem Prover

DSL Optimization

Checker

optimization-
independent

define
fact …

if …
then transform …

if …
then …

Validation Condition Generator
Local VC Local VC

Lemma:
Local VCs
Correctness

What are some of the benefits of
DSLs?
What are some of the Risks?

  Again, think for 15 seconds…
  Let’s talk…

Q3

Benefits of using DSLs

  Expressiveness: DSLs allow
solutions to be expressed in the
idiom and at the level of
abstraction of the problem
domain

  Reusability: DSL programs are
concise, and can be reused for
different purposes

  DSLs enhance productivity,
reliability, maintainability,
portability, and testability

Q3

Risks of using DSLs

  Costs shift towards
 Designing, implementing and

maintaining DSLs

  Language issues
 Limited availability of DSLs

  Issues in practice

 Potential loss of efficiency
  Integrating various DSLs is difficult

Q4

Example Implementation Approaches 1/3
[Kosar98]
  Macro processing, lexical

processing, source-to-
source transformation,
pipeline
 Pros: easy in implementation
 Cons: absence of semantic

analysis; problematic error
reporting

  Embedding/Internal
 Pros: Reused compiler/

interpreter
 Cons: Limited

expressiveness; problematic
error reporting

Example Implementation Approaches 2/3
[Kosar98]
  Compiler/interpreter

 Pros: Ability to domain-level
optimization, analysis

 Cons: High building cost

  Compiler generator
 Pros: Ability to domain-level

optimization, analysis with
minimized building efforts

 Cons: still, implementing
compiler is hard even if
compiler generator are used

Example Implementation Approaches 3/3
[Kosar98]
  Extensible compiler/

interpreter
 Pros: Reused compiler with

minimized effort
 Cons: Extreme caution to

prevent interference

  Most programs manipulate some data model
  It might be defined using Java, UML, XML

Schemas, or some other definition language

  EMF extracts this intrinsic "model" and
generates some of the implementation code
 Can be a tremendous productivity gain

  EMF is one implementation of MOF

 Not EMF = MOF

Eclipse Modeling Framework (EMF)

Q5

 Specification of an application’s data
 Object attributes
 Relationships (associations) between

objects
 Operations available on each object
 Simple constraints (e.g., multiplicity) on

objects and relationships

 Essentially the Class
Diagram subset of UML

EMF Model Definition 1/2

  EMF models can be defined in three ways:
1. Java interfaces
2. UML Class Diagram
3. XML Schema

  Choose the one matching your perspective or

skills, and EMF can generate the others as
well as the implementation code

EMF Model Definition 2/2

Q6

PurchaseOrder
shipTo : String
billTo : String

Item
productName : String
quantity : int
price : float0..*

items

0..*

EMF Model Definition:
UML class diagrams

public interface PurchaseOrder {
 String getShipTo();
 void setShipTo(String value);
 String getBillTo();
 void setBillTo(String value);
 List getItems(); // List of Item
}

public interface Item {
 String getProductName();
 void setProductName(String value);
 int getQuantity();
 void setQuantity(int value);
 float getPrice();
 void setPrice(float value);
}

EMF Model Definition: Java Interfaces

<xsd:complexType name="PurchaseOrder">
 <xsd:sequence>
 <xsd:element name="shipTo" type="xsd:string"/>
 <xsd:element name="billTo" type="xsd:string"/>
 <xsd:element name="items" type="PO:Item"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" type="xsd:int"/>
 <xsd:element name="price" type="xsd:float"/>
 </xsd:sequence>
</xsd:complexType>

EMF Model Definition - XML

Unifying Java, XML, and UML

  All three forms provide the same information
 Different visualization/representation
 The application’s “model” of the structure

  From a model definition, EMF can generate:

 Java implementation code, including UI
 XML Schemas
 Eclipse projects and plug-ins

Q7

EMF Architecture:
Model Import and Generation

I
M
P
O
R
T

GENERATE

Ecore
Model

UML

XML
Schema

Java
model

Java
edit

Generator features:
  Customizable

JSP-like
templates (JET)

  Command-line
or integrated
with Eclipse JDT

  Fully supports
regeneration
and merge

Java
editor* * requires Eclipse to run

Java
model

  Ecore is EMF’s Metamodel (model of a model)
 Persistent representation is XMI

EMF Architecture - Ecore

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

EMF Architecture -
PurchaseOrder Ecore Model

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

. . .

eReferenceType

<eClassifiers xsi:type="ecore:EClass"
 name="PurchaseOrder">
 <eReferences name="items" eType="#//Item"
 upperBound="-1" containment="true"/>
 <eAttributes name="shipTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
 <eAttributes name="billTo"
 eType="ecore:EDataType http:...Ecore#//EString"/>
</eClassifiers>

EMF Architecture -
PurchaseOrder Ecore XMI

  Alternate serialization format is EMOF
 Part of MOF 2.0 Standard

EMF Dynamic Architecture

  Given an Ecore model, EMF also supports
dynamic manipulation of instances
 No generated code required
 Dynamic implementation of reflective EObject API

provides same runtime behavior as generated code
 Also supports dynamic subclasses of generated

classes

  All EMF model instances, whether generated
or dynamic, are treated the same by the
framework

public String getShipTo() {
 return shipTo;
}

public void setShipTo(String newShipTo) {
 String oldShipTo = shipTo;
 shipTo = newShipTo;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, ...);
}

Code Generation - Feature Change

  Efficient notification from “set” methods
 Observer Design Pattern

public interface EObject {
 Object eGet(EStructuralFeature f);
 void eSet(EStructuralFeature f, Object v);
 ...
}

Code Generation

  All EMF classes implement interface Eobject

  Provides an efficient API for manipulating
objects reflectively
 Used by the framework (e.g., generic serializer, copy

utility, generic editing commands, etc.)
 Also key to integrating tools and applications built

using EMF

Short Discussion/Exercise:

How would you add behaviors
to a declarative representation
like that seen in EMF?

  What are the alternatives?
  How hard are they to

implement?
  Is there support from the

community?

MOF Action Semantics
  EMF has limited Behavioral

Modeling support
  Action semantics capture the

behavior of a model
(i.e., how the model behaves)

  Actions semantics has been
proposed for UML 2.0.
 Variants appear in Executable UML

  Let’s talk more about Action
semantics and Object Constraint
Language (OCL) on Monday

Homework and Milestone Reminders

  Case Study/Homework: “UML 2: A model-driven
development tool” by B. Selic
  Be prepared to discuss and even lead the discussion
  Write a brief summary of observations on the paper based on

assignment (on Angel)

  Milestone 2: Establish a repository and structure for
assembling components for your FacePamphlet
application
  Due by 11:55pm Friday, April ??? 1st, 2011

