
CSSE 490 Model-Based
Software Engineering:

Introduction
to MetaModels

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Transformations

Define transformation
rules for abstraction and
refinement.
 Examine model

transformations
 Explore Mappings with

MDA Example
 Discuss paper (if time)

Q3

Model Transformations

Source code space

Forward engineering
Refactoring

Reverse engineering

Model space

Model
Transformation

Q1

Model Transformation Example
Object design model before transformation

Object design model
after transformation:

Advertiser

+email:Address

Player

+email:Address

LeagueOwner

+email:Address

Player Advertiser LeagueOwner

User

+email:Address

Q2

Refactoring Example: Pull Up Field

!
!
!
public class Player {!
!private String email;!
!//...!

}!
public class LeagueOwner {!
!private String eMail;!
!//...!

}!
public class Advertiser {!
!private String email_address;!
!//...!

}!

public class User {!
!private String email;!

}!!
public class Player extends

User {!
!//...!

}!

public class LeagueOwner
extends User {!
!//...!

}!!
public class Advertiser extends

User {!

!//...!
}!

PIM to PSM Example

public class User {
 private String email;
 public String getEmail() {
 return email;
 }
 public void setEmail(String value){
 email = value;
 }
 public void notify(String msg) {
 //
 }
 /* Other methods omitted */

}

public class LeagueOwner extends User {
 private int maxNumLeagues;

 public int getMaxNumLeagues() {

 return maxNumLeagues;

 }

 public void setMaxNumLeagues

 (int value) {

 maxNumLeagues = value;

 }

 /* Other methods omitted */

}

User LeagueOwner
+maxNumLeagues:int

Object design model before transformation

Source code after transformation

+email:String
+notify(msg:String)

Some Other Mapping Activities

  Mapping Associations
  Mapping Contracts to Exceptions
  Mapping Object Models to Tables

Mapping: Unidirectional, 1-to-1 Association

Account Advertiser
1 1

Object design model before mapping

Source code after rendering
public class Advertiser {

 private Account account;
 public Advertiser() {

 account = new Account();

 }

 public Account getAccount() {

 return account;
 }

}

Q3

Example: Bidirectional 1-to-1 Association

public class Advertiser {
 /* The account field initialized
 * in the constructor and never
 * modified. */
 private Account account;

 public Advertiser() {
 account = new Account(this);
 }
 public Account getAccount() {
 return account;
 }

}

Account Advertiser 1 1

Object design model before mapping

Source code after rendering

public class Account {
 /* The owner field initialized
 * during the constructor and
 * never modified. */
 private Advertiser owner;

 public Account(owner:Advertiser)
{
 this.owner = owner;
 }
 public Advertiser getOwner() {
 return owner;
 }

}

Q4

Bidirectional, 1-to-many Association

public class Advertiser {
 private Set accounts;
 public Advertiser() {
 accounts = new HashSet();
 }
 public void addAccount(Account
a) {
 accounts.add(a);
 a.setOwner(this);
 }
 public void removeAccount
(Account a) {
 accounts.remove(a);
 a.setOwner(null);
 }

}

public class Account {
 private Advertiser owner;
 public void setOwner(Advertiser
newOwner) {
 if (owner != newOwner) {
 Advertiser old = owner;
 owner = newOwner;
 if (newOwner != null)
 newOwner.addAccount(this);
 if (oldOwner != null)
 old.removeAccount(this);
 }
 }

}

Advertiser Account
1 *

Object design model before mapping

Source code after rendering

Transforming an Association Class

Tournament Player
* *

Object design model before transformation

Object design model after transformation:
1 class and 2 binary associations

Statistics

+ getAverageStat(name)
+ getTotalStat(name)
+ updateStats(match)

Tournament Player
*	
 *	

1 1

Statistics

+ getAverageStat(name)
+ getTotalStat(name)
+ updateStats(match)

What are some ways we can handle
constraints in modeling? In coding?

  Think for a minute…
  Turn to a neighbor

and discuss it for a minute

Q2

Exceptions as Building Blocks for
Contracts
  Most object-oriented languages do not support

contracts directly
 But, exception mechanisms can be building blocks

for signaling and handling contract violations
 Try-throw-catch mechanism used in Java

  Example:

 Let’s assume the acceptPlayer() operation of
TournamentControl is invoked with a player who is
already part of the Tournament

 acceptPlayer() should throw KnownPlayer exception

Try-throw-catch Mechanism in Java
public class TournamentControl {

 private Tournament tournament;
 public void addPlayer(Player p) throws KnownPlayerException {
 if (tournament.isPlayerAccepted(p)) {
 throw new KnownPlayerException(p);
 }
 //... Normal addPlayer behavior
 }

}
public class TournamentForm {

 private TournamentControl control;
 private ArrayList players;
 public void processPlayerApplications() {
 // Go through all the players

 for (Iteration i = players.iterator(); i.hasNext();) {
 try { // Delegate to the control object.
 control.acceptPlayer((Player)i.next());
 } catch (KnownPlayerException e) {
 // If an exception was caught, log it to the
console
 ErrorConsole.log(e.getMessage());
 } } }

}

Implementing a Contract
For each operation in the contract:
  Check precondition: Check the

precondition before the beginning of the
method with a test that raises an
exception if the precondition is false

  Check postcondition: Check the
postcondition at the end of the method and
raise an exception if the contract is violated.
If more than one postcondition is not satisfied,
raise an exception only for the first violation

  Check invariant: Check invariants at the
same time as postconditions

  Deal with inheritance: Encapsulate the
checking code for preconditions and
postconditions into separate methods that can
be called from subclasses

Q5

Example Implementation of the
Tournament.addPlayer() Contract

Tournament

+isPlayerAccepted(p:Player):boolean
+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int
+getNumPlayers():int

«precondition»
getNumPlayers() <

getMaxNumPlayers()	

«invariant»
getMaxNumPlayers() > 0

«precondition»
!isPlayerAccepted(p)

«postcondition»
isPlayerAccepted(p)

Heuristics for Mapping Contracts
to Exceptions

Be pragmatic
  Focus on components with the longest life

 Focus on Entity objects, not on boundary objects
associated with the user interface

  Reuse constraint checking code
 Many operations have similar preconditions
 Encapsulate constraint checking code into

methods so that they can share the same exception
classes

What is a Metamodel?

Pragmatic Definition:
A model that answers
questions about (explains)
a set of related models

  Defines concepts, structures, and

relationships for a class of models

  A “model” is an instance of a
metamodel if it respects the
structure defined by the meta-
model

+name
Use Case

+name
Actor

+name
System

1

*

+participate

*

*
+super

0..1

+include*

*

*

+extend

0..*

Client

Add Order

PetStore

Buy

4 Layer Metamodel Architecture

Layer Description Examples

M3:
Metametamodel

Foundation for a Metamodeling
Architecture.
Defining the language to
describe metamodels.

MetaClass,
MetaAttribute,
MetaOperation

M2: Metamodel An Instance of a
metametamodel.
Defining the language to
describe models.

Class,　
Attribute,
Operation,
Component

M1: Model An Instance of Metamodel.
Defining a language to describe
the information object domain.

Product, Unit
Price, Customer,
Sale, Detail

M0: User Objects
（User Data）	

An Instance of a Model.
Defines specific information
Domain

<Chair>, <Desk>, 	
$100, $200

Source: Colin Aktinson, Essence of Multilevel Metamodeling (UML2001)	 Q6

Example Transformation Scenarios

QVT Scenario
  Context of Query/Views/

Transformation
  Transformation specified

between meta models

MOF

UML
Metamodel

Java
Metamodel

a UML
model

Java
classes

User data Java
objects

Transformation
Definiton

Transformatio
n

Execution

MOF

DTD Meta
Model

Relational
Meta Model

a DTD
a Relational

Schema

an XML
Document

a Relational
DatabaseM0

M1

M2

M3

Transformation
Definiton

Transformation
ExecutionM0

M1

M2

M3

Data Transformation Scenario
  Transformation executed

over concrete data
instances at level M0
  E.g. Common Warehousing

Metamodel (CWM)

ExampleTransformation Scenerios
(continued)

Data Binding in MOF Context
  Transformation specified

at level M2 is executed
twice in lower levels M1 &
M0

Inter-level Transformations
  XML Metadata

Interchange (XMI)
  Java Metadata

Interchange (JMI)

MOF

DTD Meta
Model

Java Meta
Model

a DTD
Java

Classes

an XML
Document

Java
ObjectsM0

M1

M2

M3

Schema
Compilation

Unmarshalin
g

Transformation
Definiton

MOF

DTD Meta
Model

UML Meta
Model

UML DTD
an UML
Model

an XML
Document

a Model
InstanceM0

M1

M2

M3 XMI

Java Meta
Model

Java
Classes

Java
Objects

JMI

Paper Discussion: Metamodel Paper

Model-Driven Development:
A Metamodeling Foundation

  What are the main thrusts
of the paper?

  What are the controversial
points and your positions?

  What did you get out of
reading about feature-based
transformation approaches?

Homework and Milestone Reminders

  Milestone 2: Establish a repository and structure for
assembling components for your FacePamphlet
application
  Due by 11:55pm Friday, April 1st, 2011 (no foolin’!)

