
CSSE 490 Model-Based
Software Engineering:

Transformational
Programming

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Transformations

Define transformation
rules for abstraction and
refinement.
 Outline transformation

systems
  Introduce

transformational
programming

 Discuss paper (if time)

Q3

For all the SQL calls in a 2M line
program done in MySQL, how would
you rewrite them in Oracle SQL? (not
the details, just the strategy)

  Think for a minute…
  Turn to a neighbor

and discuss it for a minute

Q2

Rules need verifiers…

Transformational System Applications

  General support for program modification

  Program synthesis from a formal
specification

  Automatic program generation

  Adaptation to different environments

  Verification of program correctness

Transformation Systems
  Correct programs can be built

if the task is split into
sufficiently small and formally
justified steps

  Many of those steps are
automatable

  If the automatable steps are
performed by a machine, the
programmer is free to focus
on creative aspects of the job!

Q1

Transformation System Issues

  Specification vs.
programming
languages

  Level of automation – full, semi, user-driven

  Transformation mechanism approaches
Catalog approach:
Production rules, knowledge-based systems
Generative set approach:
Elementary transformations used in constructing new
rules

Q2

Types of Transformational Systems

  Restructuring/Optimization
 Same input and output

language

  Conversion/Synthesis
 Different input and output

language

Q3,4

Transformational Programming
  Programming by successive application of

transformation rules

  Transformation — a relation
between two programs

  Transformation rule — mapping
from one program to another
that constitutes a correct
transformation (e.g., equivalency)

  Guarantees that the final version of the
program satisfies the initial formal specification

Q5

Specifying Basic Transformation Steps

  Rewrite rules
 Substitution
 Pattern Matching
 Rule application

  Examples

 Propositional formulae
 Lambda calculus

Rewrite Rules

  Rule: L : l à r!
 Label/name L!
 Left-hand side pattern l!
 Right-hand side pattern r  
!

  Pattern: term with variables
 t := x | C(t1, …, tn) | C | int | string  
!

  Examples
 A : Plus(Zero, x) à x!

Like engineering…
you must first write
before you rewrite!

Substitution

There is no
substitute for a

good substitution

  A substitution is a mapping
 from variables to terms

  Notation: [t1/x1, … , tn/xn]  
is a finite substitution mapping
xi to ti and all other variables
to themselves
!

  Application of a substitution s to a pattern
  subst(s, x) = s(x)!
  subst(s, str) = str!
  subst(s, num) = num!
  subst(s, C(t1, … , tn)) =  
! ! ! C(subst(s,t1), … , subst(s,tn))!

Q6

  A term t matches with a
pattern p if there is a
substitution s such that

 subst(s,p) = t

Term Pattern Matching

There is no match
for a term without a

pattern…

Application of Rule

Rule L : l à r!
Term t!
Application of L to t  

!= subst(s, r),  
! if subst(s, l) = t  
!= fail, otherwise  

!
t1 –Là t2 : L t1 rewrites to t2 under rule L  
!
t1 à t2 : t1 rewrites to t2 under some rule!

If you are a rule, then
applying yourself

should work!

Prop: Algebraic Simplification
Module prop-laws imports prop!
Rules!

// Associativity relation!
!
AA : And(And(x, y), z) And(x, And(y, z))!
AO : Or(Or(x, y), z) Or(x, Or(y, z))!
AI : Imp(Imp(x, y), z) Imp(x, Imp(y, z))!
AE : Eq(Eq(x, y), z) Eq(x, Eq(y, z))!
!
// Commutative relation!
!
CA : And(x, y) And(y, x)!
CO : Or(x, y) Or(y, x)!
CE : Eq(x, y) Eq(y, x)!
!

! Q7

Program Transformation Paradigms
  Interactive Program Transformation
  Syntactic Abstractions in Intentional Programming
  Simple Tree Parsing
  Tree Parsing with Dynamic Programming
  Term Rewriting
  Term Rewriting with Strategy Annotations
  Functional Rewriting
  Rewriting with Traversal Functions
  Controlling Rewriting by Reflection
  Sequences of Canonical Forms
  Non-deterministic Sequential Strategies
  Generic Traversal Strategies

Simple Transformational System

Example Rewrite Rules
InlineF :  
 |[let f(xs) = e in e'[f(es)]]| ->  
 |[let f(xs) = e in e'[e[es/xs]]]|  
!

InlineV :  
 |[let x = e in e'[x]]| -> |[let x = e in e'[e]]|  
!

Dead :  
 |[let x = e in e']| -> |[e']| where <not(in)> (x,e')  
!
Extract(f,xs) :  
 |[e]| -> |[let f(xs) = e in f(xs)]|  
!
Hoist :  
|[let x = e1 in let f(xs) = e2 in e3]| ->  
|[let f(xs) = e2 in let x = e1 in e3]|  
 where <not(in)> (x, <free-vars> e2) !

Applications of Software Transformation
1/2
  Compilers

 Translation (e.g. Java into C#)
 Desugaring (e.g. Java's foreach into for)
  Instruction selection

  Maximal munch vs BURG-style dynamic programming
 Optimization

  Data-flow optimization, Vectorization, GHC-style
simplification, Deforestation, Domain-specific
optimization, Partial evaluation…

 Type checking
 Specialization of dynamic typing

Q8

Applications of Software Transformation
2/2
  Program generators

 Pretty-printer and signature generation from syntax
definitions

 Application generation
(e.g. data format checkers from specifications)

  Program migration
 Platform conversion (e.g. MacOS to Linux)

  Program understanding
 Documentation generation (e.g. JavaDoc)

  Document generation/transformation
 Web/XML programming (server-side scripts)

So, What does this have to do with MBE?

  Reduces requirements errors as it forces
rigor in the requirements analysis
  Incompleteness and inconsistencies can be

discovered and resolved

  Correctness by construction - preserving and
guaranteeing essential properties

  Both specification and transformation rely on
the rigors of Formal Specification and
Transformation

Paper Discussion: Feature-Based
Transformation Approach Paper

Feature-based survey of model
transformation approaches

  What are the main thrusts
of the paper?

  What are the controversial
points and your positions?

  What did you get out of
reading about feature-based
transformation approaches?

Homework and Milestone Reminders

  Continue to familiarize yourself with material on
Eclipse Modeling Project

 http://www.eclipse.org/modeling/

