
CSSE 490 Model-Based
Software Engineering:

Transformation Systems

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Plan for Today

  FacePamphlet Demo
and Discussion

  Continue QVT and
introduce Eclipse
Modeling Project

  Examine
Transformation
Systems (if time)

  Homework
Assignments

Learning Outcomes: Transformations

Define transformation
rules for abstraction
and refinement.
 Describe QVT

transformations
 Explore Model to

Model transform
  Introduce Eclipse

Modeling Project

Q3

Milestone 1 - Demonstration

  FacePamphlet –
a subset of Facebook

  Some questions to
answer in the demo:
  Do the main features work?
  How is the code organized for separating

concerns? Major capabilities?
Platforms à GUI? Database?

  Are the artifacts able to be organized into
a repository?

What are some examples of rewrite
rules you might want to employ in
generating software from models?

  Think for a 15.332 seconds…
  Turn to a neighbor

and discuss it for a minute

Q2

Recall: Query-View-Transformation

  QVT specification is the heart of Model
Driven approaches

  Queries take a model as input and select
specific elements from that model

  Views are models that are derived from other
models

  Transformations take a model as input and
update it or create a new model

Q1

Recall: UML to RDB Example

UML Class model à Relational Data Model

Model Query View

QVT can be used to Transform…

  Business Process Model à Object Model
(PIM to PIM)

  Analysis Object Model à Business Object
Model (PIM to PIM)

  Object Model à Data Model
(PIM to PIM or PIM to PSM)

  Object Model à Detailed Object Model
(PIM to PSM)

QVT: Transformations

  QVT provides language to implement model-
to-model transformations

  QVT supports OCL 2.0 expressions
 We will examine OCL later

  Query libraries
 Reusable libraries of QVT mappings

  Traceability
 Automated traceability when executing mapping

  Extensible
 QVT can call custom Java methods

Transforming a Use Cases to Classes

  This example automates the construction of
a set of use case realization classes

  A simple 1-to-1 mapping from Actor to Class
 Use Cases owned by the Actor are created as

Operations within the Class

Q2,3

Transforming a PIM to a PSM
  As a basic step toward elaborating the PSM,

this QVT simply adds scaffolding code
(e.g., getters and setters)

Q4

Simple QVT Example: PIM to PSM
  PIM: Three classes and a few attributes…

  QVT: AddScaffoldingCode
 Simply add getter and setter methods

AddScaffoldingCode.qvt

Required

Impl

Bit C like… Make
Class

with
Attributes

and
Operations

Q5

Control Flow in AddScaffoldingCode.qvt

Mapping methods
do most of the work

Applying QVT transformations 1/4
  Select input model

  Choose menu option

Applying QVT Transformations 2/4
  Select QVT to use

  Select target model
 Optionally create trace file

Applying QVT Transformations 3/4

  Transformation result
  note added getter/setter

methods

Applying QVT Transformations 4/4

Trace file view

Q6

Example MBSE Tools: Editor, Model
Navigator, and Metamodel Browser Syntax

Highlighting
Error

Annotations

Code
Completion

Metamodel
Browser

Project Metamodels and
PrimitiveTypes

Eclipse Modeling Project

  Promotes model-
based engineering
technologies within the
Eclipse community

  Provides a unified set of modeling frameworks,
tooling, and standards implementations
 http://www.eclipse.org/modeling/

  QVT and other MBE resources

 http://www.eclipse.org/m2m/

Benefits of Using Transforms

  Intermediate work
products vanish due
to clear value of all
models

  Repeatable, high-
quality approach to
software design
/development

  Automated traceability between models,
queries, transformations and views

Homework and Milestone Reminders

  Read Feature-Based Transformation
Approach Paper (via schedule page)

  Familiarize yourself with material on Eclipse
Modeling Project

 http://www.eclipse.org/modeling/

  Let’s talk tomorrow in more detail about

Transformational Programming and Systems

Transformational Programming
  Programming by successive application of

transformation rules

  Transformation — a relation
between two programs

  Transformation rule — mapping
from one program to another
that constitutes a correct
transformation (e.g., equivalency)

  Guarantees that the final version of the
program satisfies the initial formal specification

It may feel a little like this…

Program Representation

Describing Languages
  Terms can be used to describe arbitrary

structured information
  A program corresponds to a subset of the set

of all terms
  A signature describes a set of terms

 Declaration of sort names
Sorts S1 … Sn!

 Declaration of constructors
constructors  
C1 : S!
C2 : S1 * … * Sn à S0!

Propositional Formulae 1/2

Module Group!
Signatures!
 Sorts Prop!
 constructors!
 False : Prop!
 True : Prop!
 Var : String à Prop !//Proposition Letter!
 Not : Prop à Prop ! !//Negation!
 And : Prop Prop à Prop !//conjunction!
 Or : Prop Prop à Prop !//disjunction !
 Impl : Prop Prop à Prop !//implication!
 Eq: Prop Prop à Prop !//Equivalence!

Propositional Formulae 2/2

  Example Terms
!

 False ! !// F  
!
 Var (“p”)! !// p  
!
 And(Var(“p”),Or(Var(“q”),(Var(“r”))) // p ∧ (q ∨ r)!
 !

Specifying Basic Transformation Steps

  Rewrite rules
 Substitution
 Pattern Matching
 Rule application

  Examples

 Propositional formulae
 Lambda calculus
 Desugaring

Let’s talk about Rules…

Rewrite Rules

  Rule: L : l à r!
 Label/name L!
 Left-hand side pattern l!
 Right-hand side pattern r  
!

  Pattern: term with variables
 t := x | C(t1, …, tn) | C | int | string  
!

  Examples
 A : Plus(Zero, x) à x!
 B : Plus(Succ(x), y) à Succ(Plus(x, y))!

Like engineering…
you must first write
before you rewrite!

Substitution

There is no
substitute for a

good substitution

  A substitution is a mapping
 from variables to terms

  Notation: [t1/x1, … , tn/xn]  
is a finite substitution mapping
xi to ti and all other variables
to themselves
!

  Application of a substitution s to a pattern
  subst(s, x) = s(x)!
  subst(s, str) = str!
  subst(s, num) = num!
  subst(s, C(t1, … , tn)) =  
! ! ! C(subst(s,t1), … , subst(s,tn))!

  A term t matches with a pattern p
if there is a substitution s
such that

 subst(s,p) = t

  Example!
  Pattern Plus(Succ(x), y)!
  Term Plus(Succ(Zero), Plus(Succ(Zero),Zero))!
  Substitution [Zero/x, Plus(Succ(Zero),Zero)/y]!

Term Pattern Matching

There is no match
for a term without a
specific pattern…

Simple Transformational System

Example Rewrite Rules
InlineF :  
 |[let f(xs) = e in e'[f(es)]]| ->  
 |[let f(xs) = e in e'[e[es/xs]]]|  
!

InlineV :  
 |[let x = e in e'[x]]| -> |[let x = e in e'[e]]|  
!

Dead :  
 |[let x = e in e']| -> |[e']| where <not(in)> (x,e')  
!
Extract(f,xs) :  
 |[e]| -> |[let f(xs) = e in f(xs)]|  
!
Hoist :  
|[let x = e1 in let f(xs) = e2 in e3]| ->  
|[let f(xs) = e2 in let x = e1 in e3]|  
 where <not(in)> (x, <free-vars> e2) !

36

Transformational Systems
  Correct programs can be built

if the task is split into
sufficiently small and formally
justified steps

  Many of those steps are
automatable

  If the automatable steps are
performed by a machine, the
programmer is free to focus
on creative aspects of the job!

Transformational System Issues

  Specification vs. programming languages

  Level of automation – full, semi, user-driven

  Transformation mechanisms
 Catalog approach:

Production rules, knowledge-based systems
 Generative set approach: Elementary

transformations used in constructing new rules

38

Types of Transformational Systems

  Restructuring/Optimization
 Same input and output

language

  Conversion/Synthesis
 Different input and output

language

Transformational System Applications

  General support for program modification

  Program synthesis from a formal
specification

  Adaptation to different environments

  Verification of program correctness

Applications of Software Transformation
1/2
  Compilers

 Translation (e.g. Java into C#)
 Desugaring (e.g. Java's foreach into for)
  Instruction selection

  Maximal munch vs BURG-style dynamic programming
 Optimization

  Data-flow optimization, Vectorization, GHC-style
simplification, Deforestation, Domain-specific
optimization, Partial evaluation…

 Type checking
 Specialization of dynamic typing

Applications of Software Transformation
2/2
  Program generators

 Pretty-printer and signature generation from syntax
definitions

 Application generation
(e.g. data format checkers from specifications)

  Program migration
 Platform conversion (e.g. MacOS to Linux)

  Program understanding
 Documentation generation (e.g. JavaDoc)

  Document generation/transformation
 Web/XML programming (server-side scripts)

So, What does this have to do with MBE?

  Reduces requirements errors as it forces
rigor in the requirements analysis
  Incompleteness and inconsistencies can be

discovered and resolved

  Correctness by construction - preserving and
guaranteeing essential properties

  Both specification and transformation rely on
the rigors of Formal Specification and
Transformation

Model-Based System Engineering
(according to Software Engineering Institute)

Requirements
Analysis

System
Integration

Predictive Analysis Early In & Throughout Life Cycle

Architecture Modeling & Analysis

Rapid Integration
Predictable Operation
Upgradeability
Reduced Cost

ABS

ABS

ABS

ETC

ETC

NAV

NAV

ETC

A Control Engineer Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s +

-

Matlab

Component Analysis

application Code

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Simulink

Tune parameters

Continuous feedback for
a control engineer

Continuous
feedback
in a controller

Software System Engineer Perspective
with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Arch. Tools

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

AADL Runtime

package Dispatcher is

A.p1 := B.p2;
Case 10ms:
 dispatch(a);
dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysis Reliability analysis R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

Continuous feedback by
Comparing analysis results
with actual results

Application
Components

Architecture Model

Execution
Platform

A Combined Perspective

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

K1 K2s +

-

Matlab Component Analysis

Application Code

with Text_IO;
package Main is

begin

type real is digits 14;
type flag is boolean;

x : real := 0.0;
ready : flag := TRUE;

Simulink
Tune parameters

Continuous interaction
between
Control engineer
& system engineer

Arch. Tools AADL Runtime
package Dispatcher is

A.p1 := B.p2;
Case 10ms:
 dispatch(a);
 dispatch(b);

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

Timing analysis Reliability analysis R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 234

T1 T2 T3 T4

12 12 5 6
23 34 8 8
24 23 2 34

Runtime
Data

R1 R2 R3 R4

12 12 5 6
23 34 8 8
24 23 234

Refine properties

Architecture Models

Multiperspective Model-Based
Framework

Process models

Life cycle anchor points
Risk management

Key practices

Success models

Business case
IKIWISI

Stakeholder win-win

Property models
Cost

Schedule
Performance

Reliability

Product models
Domain model
Requirements
Architecture

Code
Documentation

Planning and control

Milestone content

Evaluation and
analysis

Process
entry/exit
criteria

Product
evaluation

criteria

Each perspective informs and provides evaluation criteria for the other perspectives.

•  model clash identification	

•  model clash resolution	

•  model clash avoidance	

Late Discovery of System Problems

 System integration problems
 System instability and failures
  Implicit and mismatched

assumptions
 Shared computing resources
 Complexity of component

interaction
  Functional
  Extra-functional

 Current practice
 Build components first
 Then integrate and test

 Way forward
 Analyze system models early and

often
 (Virtual Integration)
 Evolve components and

integrated system

Mismatched Assumptions
 Impact – AADL integrates allowing
analysis

System Engineer Control Engineer

A
pplication D

eveloper
H

ar
dw

ar
e

E
ng

in
ee

r System
Under
Control

Control
System

Compute
Platform

Runtime
Architecture

Application
Software

Embedded SW System
Engineer

Physical Plant
Characteristics

Data Stream
Characteristics

Precision
Units

Concurrency
Communication

Distribution
Redundancy

Why do system level failures still occur despite
fault tolerance techniques being deployed in
systems?

We Need Change

MBE offers a way to find more faults in the requirements-architecture
design phase
Impact – AADL permits early inc analysis

5x

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

30x

Source: NIST Planning report 02-3,
“The Economic Impacts of Inadequate
Infrastructure for Software Testing”,
May 2002.

Where faults are introduced
Where faults are found
The estimated nominal cost for fault removal

20.5%

1x

20%, 16%

10%, 50.5%

0%, 9% 15x

70%, 3.5%

10x

Basic Model Layers

  One or model levels
per layer

  Mappings and
Transforms between
models
 Mappings
 Transforms

 Platform Independent
Models

Computation Independent
Models

 Platform Specific
Models

Q5,6

