
CSSE 490 Model-Based
Software Engineering:

More MBSD

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.
 Outline Abstraction and

Requirements
 Examine formalisms in

representing software
 Discuss KAOS and B

Language to show semi-
formal approach

Q3

Software – It’s Big, It’s Bad,
… and It Gets in Everything

  It’s Big / Complex
 Lots of Components Distributed across Net
  Increasingly # and intricacy of interactions

  It’s Bad

 Quality and Security …

  And it Gets in Everything…
  Internet Coffee Pot
 Trains, planes, and automobile
 Bank/Mortgage/Finance
 National security systems

What are some of properties of a
formal representation form?

How do they support the process of
generating software?

  Think for a minute…
  Turn to a neighbor

and discuss it for a minute

Q2

Abstract Representation Form
  A software Need:
“…We need to be able to share information
about ourselves and our activities with our
friends.”

Share Information

A little Less Abstractly…

  A Software Capability:
“…We accomplish this using
a capability that provides
accessible, but secure
information, about ourselves
and our activities…”

  Of course, there would derived
information at this point…
access, security, …

  How do we keep track of this information?

Q1

At Some Point We Specify the “What”

  Requires must be more specific
  This means that the requirements must be unambiguous,

complete, consistent, verifiable/testable, and traceable…

R1: The system must provide an ability to present
individual information on a webpage for others to view.
R1.1: The system must allow access to the information
for viewing, but protect it from tampering.
R1.1.1: The system must provide requisite security for
information about ourselves and our activities.
…R2: The system…

  This can get to be tricky - informality offers flexibility
while formality provides requisite specifics

Elaborate and Refine Understanding

  Not a lesson in Requirements,
but rather a point about modeling…

  Starting with Abstract
Requirements and through
a process of elaboration and
refinement, we successively
transform them to
specifications, models, and
ultimately implementation

Elaboration and Refinement…

  We elaborate specifications with
more and more detail – adding
reality to a vision of how things
should work

  We refine the specifications
through activities like refactoring –
integrating structure and optimizing
for efficiencies

  Systematically, we reduce
uncertainties as more concrete
information is realized through the
engineering process

Q2

So, can we Automate some of This?

  Bohner’izm: Objective of requirements
engineering is to produce unambiguous,
complete, consistent, verifiable, traceable
specifications of what the system does
from an external perspective.

  Manual methods contain some clues…
 Above attributes of requirements specifications are

the goals of formal specification

  The more formal the representation the more
provable and more automateable the process
to transform them into implementation!

Q3, 4

BUG in the Formal Soup…
  Formal specification is hard!
  That is, doing Formal Methods (FM) is taxing

enough to reduce the engineer’s capability to
solve the problem
 Formality leads to incompleteness in large systems
  Informality leads to mistakes in large systems

  So, what can we do?

 We can get more Mozarts (smart folks)? Nope…
 We can train our engineers better? Some…
 We can separate concerns and use automation to

help support the load? Maybe more…
Q5

Waiter, there’s a Human in my Soup…

More seriously, …
How do we convert informal
requirements into representations
that can be used to generate code?

  Think for a minute…
  Turn to a neighbor

and discuss it for a minute

Going Semi-formal to get to Formal

  Can we do some pre-conditioning
of the requirements to get them
into a form that we can use formal
methods to transform them?

  A goal-directed approach provides
some of this scaffolding in this
example of formalizing security
requirements for generation
 KAOS
 B

Secure
Software

B

KAOS
Reqts

Let’s Get Formal (but not too formal, too soon)

Understanding and Formality

  Understanding nascent à Informal

  Understanding forming à Semi-Formal

  Understanding specific à Formal

Q6

KAOS
Knowledge Acquisition in autOmated Specifications

Goal-oriented approach for eliciting, analyzing,
& modeling requirements (functional & non-functional)

  Requirements are represented as goals (intuitive)
  The formal underlying framework is based on

first-order temporal logic
  Results in a requirements model in the form of a

directed acyclic graph (obstacle & impact analysis)
  Assigning agents to goals aids in visualizing

responsibility

Q7

The B Method

  Popular formal method for developing
software systems

  Starts with a very abstract model

  Preserves proven system properties in
refinement

  Provides for correctness by construction
 Guarantees system correctness…

Q8

KAOS: Elaboration & Obstacle Analysis

Object/Operation Capture

Goal Elaboration

Goal Operationalization

Responsibility Assignment

Obstacle Identification

Obstacle Resolution

Objective is to have
complete and
well-organized
requirements.

Source: Van Lamsweerde

Highly Iterative, Goal-Directed

Example:
Electronic Smart Card Goal Graph

Goal Operationalization

21

KAOS Transformation to B (Riham Hassan 2008)

Homework and Milestone Reminders

  Read paper on Angel: “Capturing and Using Software
Architecture Knowledge for Architecture-Based
Software Development” by Babar et. al.
 Be prepared to discuss and even lead the discussion
 Write a brief summary (half page) of observations on

the paper and turn it in (in class)
  Title
  Basic thesis/premise/problem
  Basic approach to address the problem
  Summary of results
  Key things you got from the paper personally
  Open questions

  Let’s talk Thursday about capturing software assets

