
1

CSSE 490 Model-Based
Software Engineering:

Addressing the Software
Productivity Gap

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

It’s Tuesday… are we productive yet?

What is Software Productivity?

  Think for 15 seconds…
  Turn to a neighbor

and discuss it for a minute

Q2

2

Learning Outcomes: MBE Discipline

Relate Model-Based
Engineering as an
engineering discipline.
 Software demand

outstripping pace
 Examine how software

productivity addressed
 What can MBE do for

software productivity?

Q3

Size Matters in Software

 Early On-Time Delayed Canceled

 1 FP 14.68% 83.16% 1.92% 0.25%

 10FP 11.08% 81.25% 5.67% 2.00%

 100FP 6.06% 74.77% 11.83% 7.33%

 1KFP 1.24% 60.76% 17.67% 20.33%

 10KFP 0.14% 28.03% 23.83% 48.00%

 100KFP 0.00% 13.67% 21.33% 65.00%

 Average 5.53% 56.94% 13.71% 23.82%

From Capers Jones, Patterns of Software Systems Failure and
Success (International Thomson Computer Press, 1996)

Q1

Thirty-five Years of Progress

We have better Software and Productivity…
but, we are still not keeping pace with demand!

Software Programmers
(Database, Algorithm...)

Structured Design (Data flow, modules, …)
Computing = Centralized
Systems = Standalone; Large = ~100K SLOC
Change focus = Source Code
Trade-offs = Efficiency (Memory, processing time…)

1976

Software Disciplines (Database, HCI, Web...)
Computer Disciplines (Network, Embedded, Sensors...)
Application Domain Disciplines (Business Mgt., Aerospace...)

Engineering Design (Inter/Multidisciplinary, Optimize…)
& Human Centered Design (Usability, Customer…)
Computing = Pervasive
Systems = Distributed; Large = ~10M SLOC

Change Focus = Architecture
Trade-Offs = Effectiveness (Product-Line, Change…)

2011

Q2

3

Provocative Statements on
Software Engineering
  Software Engineering’s time has past.

 Tom DeMarco
  Software engineering isn’t engineering.

Peter Denning

  Many advancements now measurable - we
have come a long way, but there is still much
to do Barry Boehm

  Social problems complicate technical ones --
adoption of new tools hampered by business
and management objectives Bob Glass

Hardware View of Productivity Gap

1K

10K

100K

1M

10M

100M

Lo
gi

c
G

at
es

/D
ev

ic
e

1000M

100M

10M

1M

100K

10K G
at

es
/M

on
th

 in
 A

pp
lic

at
io

n

Development
Productivity
Gap

Moore’s Law

Q3

Software System Landscape

  Littered with lots of new stuff
 Self-Aware/Healing Systems, Web Apps, Service-

Oriented Architectures, Ubiquitous Computing…

  It’s Big and Connected
 Lots of Components Distributed across Net

  It’s Complex

 The number and intricacy of
the interactions

  Can’t fit it all in the engineer’s head!

4

Productivity

  Typically expressed as a ratio of
 Outputs / Inputs

 E.g., Function Points / Staff Month
 Assumes units of output & input are

known, consistent, & unambiguous
 Assumes they are continuous and linear

  Also a function of quality

  Business productivity viewed as Utility/Cost

Q4

Software Productivity’s Greatest Increases

1.  Abstraction Higher
Level Models
(Languages)

2.  Reuse (levels)

3.  Software Process (types/maturity)

4.  Automation - (cobbler’s children)

Q5

Language Abstraction

General Purpose Languages
  Micro Code – bit by bit
  Assembly Code – register by register
  Early Procedural Languages (e.g., Fortran)

 Decision by decision,
Computation by computation

  Object-Oriented Languages
 Object by object, class by class, …

Domain Specific Languages ?
Architecture Description Languages ?

Q6

5

Software Reuse Effectiveness

R
eu

se
 L

ev
er

ag
e

Effort to Reuse

Design
Reuse

Component-Base
Development

Program
Libraries

Application
Generators Product

Lines Domain
Reuse Configurable

Applications

Code
Reuse

Services
COTS
Integration

Design
Patterns

Generative Reuse

  Program generators involve the reuse of
standard patterns and algorithms
  Embedded in the generator

and parameterized
  Program then

automatically generated

  Types of program generator
  Application generators for business processing
  Parser / lexical analyser generators for language

processing
  Code generators in CASE tools

Q7

Product Line (Application Families)
  Software product lines are applications with

generic functionality that can be adapted and
configured for use in a specific context

  Product specialization: Platform, Environment,
Functional, and Process

  Adaptation may involve:
  Component and system configuration
  Adding new components to the system
  Selecting from a library of existing components
  Modifying components to meet new requirements

6

Process Maturity Levels

Process

Ad hoc
▲  High variability/Low

predictability
▲  Heroes => Success
▲  High Risk

Process

Repeatable
▲  Project metrics focus
▲  Low variability/Medium

predictability
▲  PM => Success
▲  Medium-High Risk

Defined
▲  Process metrics focus
▲  High predictability
▲  Process => Success
▲  Medium Risk

More Traction at Upper levels...

Managed
▲  Product and

Process metrics
▲  High predictability
▲  Managed Process

=> Success
▲  Low-Medium Risk

Optimized
(Incorporated)

▲  Value metrics
▲  High predictability
▲  Agility => Success
▲  Low Risk

Factors Effecting Productivity
  Abstraction level of Language/Reasoning
  Application Domain Experience
  Common understanding of

problem/solution
  Process
  Quality
  Project
  Technology support
  Development environment

Q8

7

Productivity Enhancement

Another way to increase productivity
is to involve more people.
Who could get involved if models
were used for programming?

  Again, think for 15 seconds…
  Turn to a neighbor and discuss

it for a minute

Model-Based Mindset Adjustment
  Model-Based Engineering (MBE) in most

engineering disciplines is used largely for
understanding and verification
 Models serve as basis for simulations

  For software, our simulations become

operational!

  In software, everything is a model!
 Assembly Language, 3rd Generation Language, …
 Object, functional, procedural, symbolic, …
 Finite State Machines, Petri-net, data/control flow, …

8

Somewhat unproductive…

Mar Apr May

Class Begins
Modeling

Fundamentals

Representation
Forms

Overview of
MBE Approaches

Domain
Engineering

Term Paper
Presentation

(TBD)

Domain
Specific

Languages
Model-Driven
Architecture

Tentative Spring Quarter Timeline

Exam
4/5

Automatic
Programming

Transformation
Basics

MetaModels Productivity &
Model-Driven
SW Engin’g
Concepts

Software
Factories

Homework and Milestone Reminders

  Read Chapter 3 of MBSD Text

  Let’s talk Thursday about elements of Model-
Based Software Development

