

CSSE 490 Model-Based Software Engineering: Introduction

Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: bohner@rose-hulman.edu

What is a Model?

- An abstraction, perspective, or simulation? Mix of these or something else?
- A description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for understanding its characteristics
- Models answer questions!

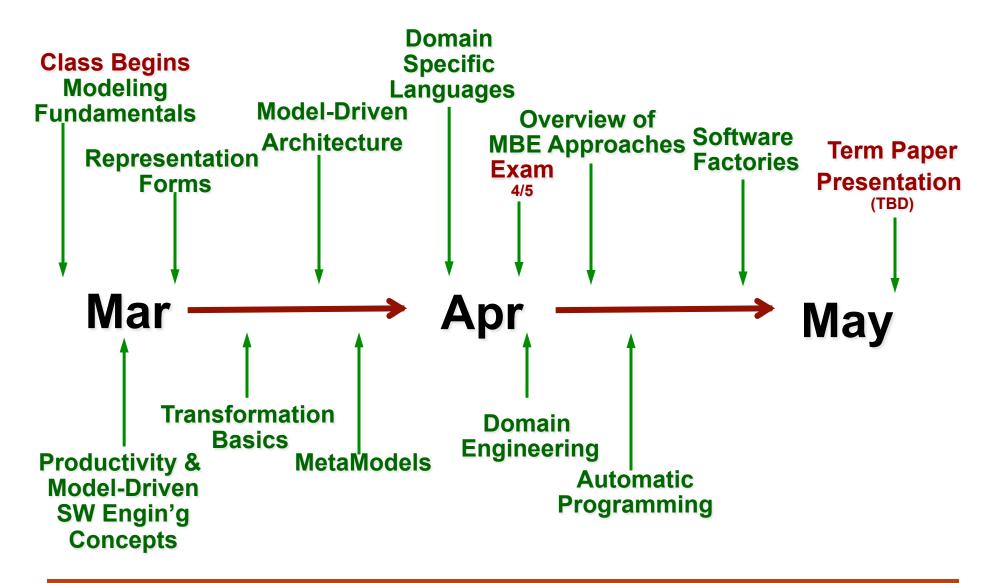
What is Engineering?

- It's what an engineer does... and it's a department in a firm...
- But, what else can you think of

- Think for 15 seconds...
- Turn to a neighbor and discuss it for a minute

How do we use Models in Engineering?

- To understand/specify the needs/requirements
- To describe the system timing and interfaces
- To specify the performance and quality
- To communicate the system architecture
- To design the software/hardware systems
- To specify the interactions and behaviors
- To validate the requirements and verify interfaces
- To simulate the system and run key tests
- To verify the design
- To specify the source code and execute it...


How can we use Models in Engineering Systems and Software?

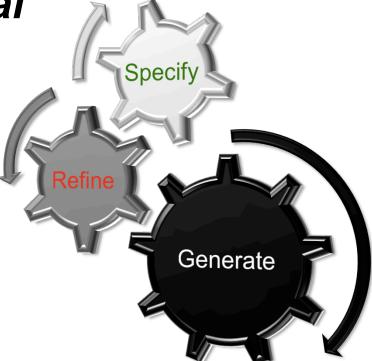
- To simulate the system before production
- To test the system in a realistic environment
- To specify the system at higher levels of abstraction and reliably generate the software

Analysis

Tentative Spring Quarter Timeline

Plan for Today

- Approach to an Advanced Topics Course
- Course Outcomes and Related Goals
- Modeling What is it?
- Guidelines and Expectations
- Homework Assignments


Advanced Topics Course

- A lot less formal less "sage on the stage"
 Unless you prefer it ©
- A lot more discussion / class participation
 Reading discussions can be led by students
 Friday's could be a lab day to work on project
- No text is sufficient Ours is a starting point
 Readings assigned each week to augment text
 Suggestions from students welcome

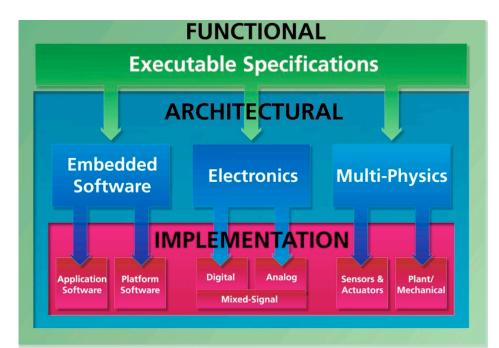
Learning Outcomes: Models

Explain the fundamental principles of modeling.

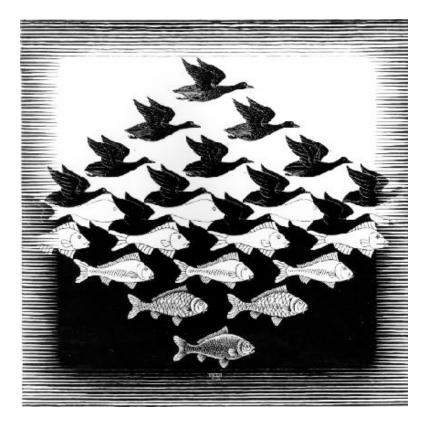
Learning Outcomes: Modeling in Software

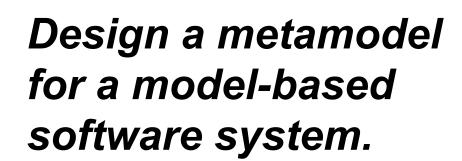
Apply modeling principles to software

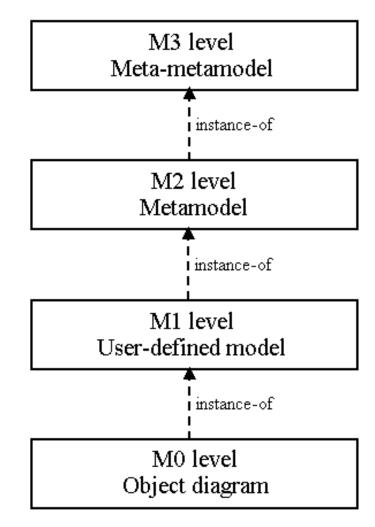
Learning Outcomes: MBE Discipline


Relate Model-Based Engineering as an engineering discipline.

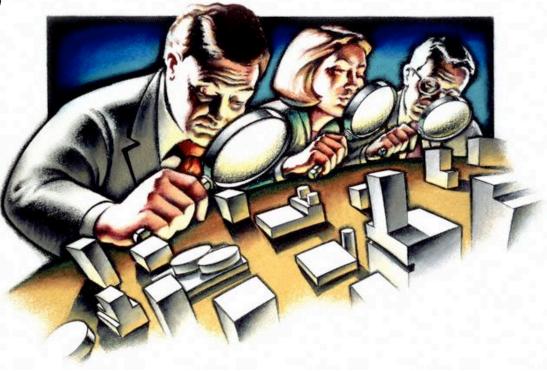
Learning Outcomes: Architecture Description Languages


Demonstrate the fundamentals of Architecture Description Languages (ADL).


Learning Outcomes: Transformations


Define transformation rules for abstraction and refinement.

Learning Outcomes: Metamodels



Learning Outcomes: Evaluate MBSE

Evaluate model-based software engineering principles and strategies.

Learning Outcomes: Demonstrate MDA

Conduct the Model-Driven Architecture (MDA) approach on a software example.

Continuing: What is a Model?

- A description of observed behavior, structure, or activity simplified by ignoring certain details
- Bohner' ism: A model is an abstraction of some reality that helps <u>explain</u>, <u>analyze</u>, or <u>understand</u> the entity modeled in a context

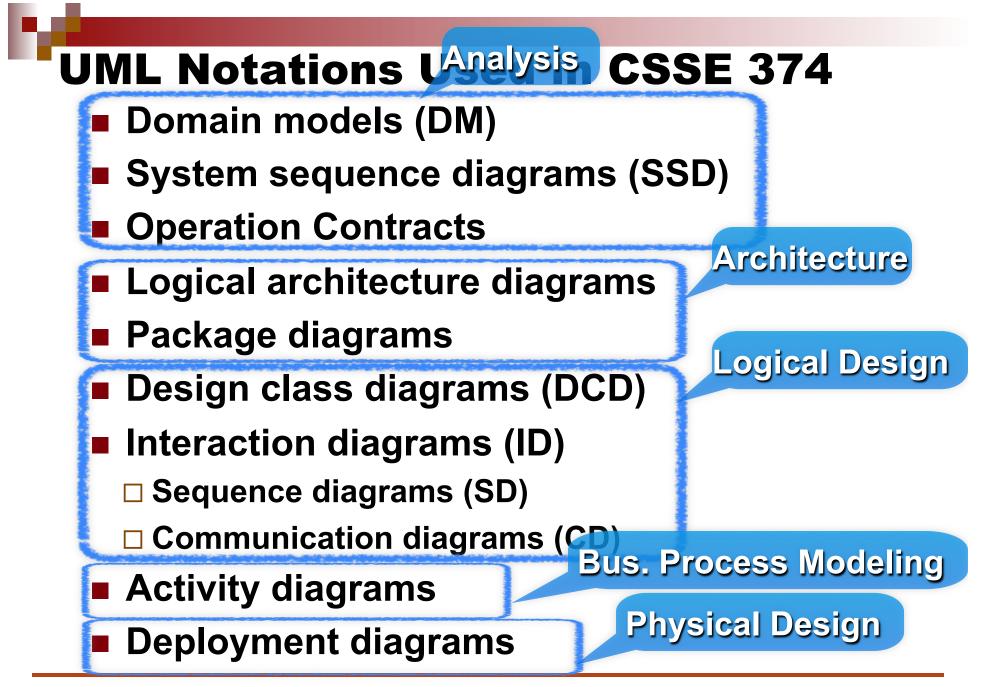
Why Model?

Understanding

Modeling "answers questions" about what is modeled

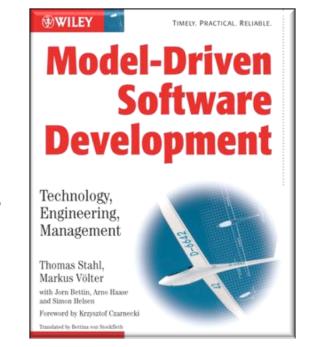
- Helps Arrive at Consensual Reality
- "See" opportunities to improve

Key Point: Model(s) provide the means to express and integrate key information needed to generate software systems



"Model" is to "Reality" as ______is/are to ____

- Again, think for 15 seconds...
- Turn to a neighbor and discuss it for a minute



Course Textbook and Readings

Required Textbook

- Model-Driven Software Development: Technology, Engineering, Management,"
- by Thomas Stahl, Markus Voelter
- □ Wiley (2006).
- □ ISBN 10: 0470025700
- Readings will be also be assigned from relevant papers

Course Mechanics

 7th periods here in Olin 167
 Class meetings: Monday, Tuesday, & Wednesday
 Project Lab: Friday

Find most material on Angel

- Grades and Drop boxes will be on Angel
- Daily Quizzes?

Let's have some fun!

	Hear
Se	e
	Do

Guidelines and Expectations

- Demanding Course: 8+ hours/week outside of class
- Please read the assigned material before class
- Check Rose email & Angel course website daily
- Participation Teams and Class activities
 - □ You will be working in teams on some assignments
 - Be fair to your team members...they will be evaluating you!
- Be mindful of the CSSE Honesty Policy

Electronic Distraction Policy

Grading and Evaluation

- 30% Theory
 - Examination (20%)
 - Quizzes/Discussion (10%)
- 70% Practicum
 - Homework/Case Studies (15%)
 - Term Paper/Presentation (20%)
 - Project Deliverables (35%)

Grade Scale

The usual point scale will apply (subject to curve).

Statute of Limitations

Any questions (or concerns) about the evaluation of an assignment must be raised within two weeks of the posting of score information.

Rewarding Contributions

Fairness Principle

- Reward extraordinary contributions
- Discourage freeloading

Mechanism: Performance Evaluations

	Fred	Dino	Barney
Fred	810	8	8
Dino	8	9	8
BamBam	7	10	8
Individual Avg.	7.67	9	8
Team Avg.	8.22	8.22	8.22
Raw Weight	93%	109%	97%
Clamped Weight	93%	105%	100%

Late Work

Legitimate reasons for late work,

Must be acknowledged before due date

Late buffer of 2 assignments

- Can spend 1 on any homework assignment
- Can earn 1 per assignment
- Use survey on ANGEL <u>before the</u> <u>assignment deadline</u> to spend/earn late days

Deadlines

- Deadlines temperamental beasts,
 - ... you hug one too close and it's liable bite you!

Homework and Milestone Reminders

- Read Chapter 2 of MBSD Text
 Start Chapter 3 for Thursday
- Let's talk tomorrow about why MBSE may be solution for productivity gap issues...

