
White paper
October 2008

SysML-based systems engineering
using a model-driven development
approach.

Hans-Peter Hoffmann, PhD, IBM

Contents

SysML-based systems engineering using a model-driven development approach.
Page 2

3 Overview
3 Introduction
4 Process overview
8 Requirements analysis
9 System functional analysis
14 Architectural design
19 Conclusion

SysML-based systems engineering using a model-driven development approach.
Page 3

Overview

More and more, systems engineers are turning to the Systems Modeling Language (SysML)
to specify and structure their systems. This has many advantages, including verifiability and
ease of passing off information to other engineering disciplines, particularly software. This
paper describes a SysML-based process that systems engineers can use to capture require-
ments and specify architecture. The process uses SysML exclusively for the representation
and specification of system characteristics. Essential SysML artifacts include use case dia-
grams, sequence diagrams, activity diagrams, statechart diagrams and structure diagrams.
The process is function driven and is based heavily on the identification and elaboration
of operational contracts, a message-based interface communication concept. The outlined
process has been successfully implemented with applications at various customer sites.

Introduction

For many years, software engineers have successfully applied Unified Modeling Language
(UML) to model-based software engineering. There have been several attempts to introduce
UML and the underlying object-oriented methods to systems engineering in order to unify
the overall development process. However, many systems engineers continue to use classical,
structured analysis techniques and artifacts to define system requirements and designs. One
reason for this could be that systems engineering is mostly driven by functional requirements.
Speaking in terms of system functionality is still considered the most natural way of express-
ing a design by most of the domain experts involved in the early phases of system development
(electrical engineers, mechanical engineers, test engineers, marketing and, of course, custom-
ers). Given this, the only way to unify the overall development process is to extend UML with
regard to function-driven systems engineering and to define a process that enables a seam-
less transfer of respective artifacts to UML-based software engineering. For this purpose the
Object Management Group (OMG) formed the SysML consortium.

The following sections describe a SysML-based process that systems engineers can use to
capture requirements and specify architecture. The approach uses model execution as a
means for requirements verification and validation.

SysML-based systems engineering using a model-driven development approach.
Page 4

Process overview

Figure 1 shows the integrated systems and software engineering process by means of the
classic “V” diagram. The left leg of the “V” describes the top-down design flow, while
the right side shows the bottom-up integration phases from unit test to the final system
acceptance. Using the notation of statecharts, the iterative characteristic of the process is
visualized by the “high-level interrupt” due to system changes. Whenever changes occur,
the process will restart at the requirements analysis phase.

Figure 1. Integrated systems/software development process

SysML-based systems engineering using a model-driven development approach.
Page 5

Systems engineering is characterized by a sequential top-down workflow from requirements
analysis to system analysis and system architectural design. A loop back to the requirements
analysis may occur if during systems analysis or architectural design functional issues require
a re-examination of the higher-level requirements. The software engineering workflow is
characterized by the iterative and incremental cycles through the software analysis and design
phase, the implementation phase, and the different levels of integration and testing.

It is important to note the creation and reuse of requirements related test scenarios all
along the top-down design path. These scenarios are also used to assist the bottom-up
integration and test phases and, in the case of system changes, regression test cycles.

Key objectives of the systems engineering process are as follows:

Identification and derivation of required system functionality
Identification of associated system states and modes
Identification of subsystems and allocation of requirements/functionality to them

With regard to modeling, these key objectives imply a top-down approach on a high level
of abstraction. The main emphasis is on the identification and allocation of a needed
functionality (e.g., a target tracker), rather than on the details of its behavior (e.g., the
tracking algorithm).

Figure 2 depicts an overview of the SysML-based systems engineering process. For each of the
systems engineering phases, it shows the essential tasks, associated input and work products.
The process is operational contract (OpCon)–driven. An operational contract specifies system
behavior by adding pre- and post-conditions to the description of respective operations.
Operational contracts are the primary source of traceability to the initial requirements. The
essential tasks in the requirements analysis phase are requirements capture and the grouping
of requirements into use cases. The main emphasis of the system functional analysis phase is
on the transformation of the identified functional requirements into a coherent description of
system functions (operational contracts). Each use case is translated into a respective black-
box model and verified and validated through model execution. Incrementally these black-box
use case models are merged to an overall black-box system model.

SysML-based systems engineering using a model-driven development approach.
Page 6

Figure 2. SysML-based systems engineering process

The focus of the subsequent system architectural design phase is the allocation of the
verified and validated operational contracts to a physical architecture. The allocation is
an iterative process. In collaboration with domain experts, different architectural con-
cepts and allocation strategies may be analyzed, taking into consideration performance
and safety requirements that were captured during the requirements analysis phase.

In the subsequent subsystem architectural design phase, decisions are made on which
operational contracts within a physical subsystem should be implemented in hardware
and which should be implemented in software (hardware/software tradeoff analysis). The
different design concepts are captured in the deployment model and verified through
regression testing.

SysML-based systems engineering using a model-driven development approach.
Page 7

The deployment model defines the system architecture baseline for the subsequent hard-
ware/software development. Essential documents that are generated from the deployment
model are:

Hardware/software requirements specifications.
Logical interface control document (ICD).

The outlined systems engineering process is model based, utilizing SysML as the modeling
language. Figure 3a depicts an overview of the essential SysML diagrams. Diagrams that
support model execution are colored. Essentially, these are a subset of UML 2.0, thus sup-
porting a seamless transition to UML-based software engineering. Figure 3b shows how
the selected artifacts are applied in the functional analysis phase.

The following sections detail the workflow in the different systems engineering phases
with examples from a case study.

Figure 3a. Essential SysML diagrams

Figure 3b. SysML artifacts utilized in functional analysis

SysML-based systems engineering using a model-driven development approach.
Page 8

Requirements analysis

Requirements capture

The requirements analysis phase starts with the analysis of the process inputs. Customer
requirements are translated into a set of requirements that define what the system must
do (functional requirements) and how well it must perform (quality of service require-
ments). The captured requirements are imported into the model/requirements repository.

Definition of use cases

Once the requirements are sufficiently understood, they are clustered into use cases.
A use case describes a specific operational aspect of the system (operational thread). It
specifies the behavior as perceived by the users and the message flow between the users
and the use case. It does not reveal or imply the system’s internal structure (black-box
view). A set of use cases is grouped in a use case diagram. Use cases can be structured
hierarchically. There is no “golden rule” with regard to the number of use cases needed
to describe a system. Experience shows that for large systems, typically 6 to 24 use cases
are defined at the top level. At the lowest level, a use case should be described by at least
five, with a maximum of 25, essential use case scenarios.

At this stage, emphasis is put on the identification of “sunny day” use cases, assuming
an error/fail-free system behavior. Exception scenarios are identified at a later stage (=>
system functional analysis) through model execution. If more than five error/fail scenarios
are found for a use case, a separate exception use case will be defined and added to the
“sunny day” use case via the include or extend relationship.

Figure 4 shows the use case diagram of the case study. The system is a main battle tank
(MBT). Two use cases are studied:

Acquire target
Engage target

SysML-based systems engineering using a model-driven development approach.
Page 9

The actors are commander and gunner. The use case diagram is imported into the
model/requirements repository. The use cases then are linked to the system requirements
and checked for complete coverage.

Figure 4. Case study use case diagram

System functional analysis

In the system functional analysis phase, each use case is translated into a model, and
the underlying requirements are then verified and validated through model execution.
A message-driven approach (figure 5) is used. Characteristics of this approach are:

The system structure is described by means of a SysML structure diagram using
blocks as basic structure elements and ports and the notation of provided/required
block interfaces.
The communication between blocks is based on messages (service requests).
System functionality is captured through operational contracts (services), e.g.,
operation1()., operation4() in figure 5.
Functional decomposition is performed through decomposition of operational contracts.

SysML-based systems engineering using a model-driven development approach.
Page 10

Figure 5. Message-driven modeling approach

The black-box use case analysis starts with the definition of the use case model context dia-
gram. The SysML artifact used for this is the structure diagram (internal block diagram).
Elements of this diagram are blocks representing the actors and the system. Identifying
the black-box use case scenarios is the next analysis step. A use case scenario describes a
specific path (functional flow) through a use case. It details the message flow between the
actors and the use case and the resulting behavior (operational contracts) at the recipient.
In the SysML, a scenario is graphically represented in a sequence diagram. The lifelines
in the black-box sequence diagram are the actors and the system (figure 6). Once a set of
essential scenarios is captured, the identified functional flow information is merged into
a common use case description. The SysML artifact used for this is the activity diagram
(figure 7). Each action block in this diagram corresponds to an operational contract in a

SysML-based systems engineering using a model-driven development approach.
Page 11

sequence diagram. The black-box activity diagram plays an essential role in the upcom-
ing architectural design phase.

Based on the information captured in the black-box sequence diagrams and black-box
activity diagram, the blocks of the use case model context diagram next are populated,
and ports and associated interfaces are defined. Figure 8 shows the resulting static model
of the use case acquire target.

Figure 6. Black-box use case scenario UC1BB21; CITV = commander’s independent thermal viewer,
GPS = gunner primary sight

Figure 7. Black-box activity diagram (use case acquire target)

SysML-based systems engineering using a model-driven development approach.
Page 12

Figure 8. Static black-box system model (use case acquire target)

The next step in black-box use case analysis is the description of system-level, state-based
behavior. The SysML artifact used for this is the statechart diagram (figure 9). Statecharts
are hierarchical statemachines that visualize system states and modes and their changes
as the response to external stimuli. The use case related state-based behavior is derived
from the captured use case scenarios.

At this stage, the verification and validation (V&V) of the black-box use case model and the
underlying requirements (i.e., operational contracts) can start. V&V is performed through
model execution using the captured black-box use case scenarios as the basis for respective
stimuli. It should be noted that, following the previously outlined key objectives of this
process, the focus is on the analysis of the generated sequences rather than on the under-
lying functionality.

So far, the use case model represents an error/fail-free (“sunny day”) behavior. At this
stage, it may be extended regarding possible exceptions (“rainy day” behavior).

SysML-based systems engineering using a model-driven development approach.
Page 13

Figure 9. Black-box system behavior (use case acquire target)

The outlined steps are repeated for each use case, except that, instead of creating new
activity diagrams, the initial black-box activity diagram is incrementally extended based
on the information of the new use case scenarios. The same applies to the system black-
box statechart diagram. The subsequent model V&V is performed in two steps. First, the
extended black-box system model is verified/validated through model execution using the
new black-box use case scenarios as the basis for respective stimuli. Then, the collabora-
tion of the implemented use cases is verified through regression testing.

SysML-based systems engineering using a model-driven development approach.
Page 14

At the end of the functional analysis phase, a black-box system model is built of verified
and validated operational contracts, representing the underlying functional requirements.
The black-box system model is imported into the model/requirements repository, and the
operational contracts are linked to the high-level system requirements. The black-box
use case scenarios are imported into the test data repository for reuse in the subsequent
architectural design phases.

Architectural design

System architectural design

The focus of the system architectural design phase is the allocation of the verified and
validated operational contracts to a physical architecture. The allocation is an iterative
process and is performed in collaboration with domain experts. Different architectural
concepts and allocation strategies may be analyzed, taking into consideration performance
and safety requirements that were captured during the requirements analysis phase.

System architectural design starts with the definition of the physical subsystems. The
SysML artifact used for this is the structure diagram. Constituents of this model are the
actor blocks and the system block. Parts of the system block are the physical subsystems
of the chosen architecture. In the case study, the system design consists of six physical
subsystems (LRU = line replaceable unit, figure 11).

Figure 10. White-box scenario UCIWB21 (decomposed black-box scenario of figure 6)

SysML-based systems engineering using a model-driven development approach.
Page 15

Next, the previously identified black-box operational contracts are allocated to the physi-
cal subsystems using an activity diagram (white-box activity diagram). Essentially, this
activity diagram is a copy of the black-box activity diagram. The only difference is that
the system now is partitioned into swim lanes, each representing a physical subsystem.
Based on the chosen design concept, the system operational contracts are “moved” to
respective subsystem swim lanes. An essential precondition for this allocation is that the
initial links (functional flow) between the operational contracts are maintained.

The white-box activity diagram is complemented by the definition of white-box sequence
diagrams. White-box sequence diagrams are decompositions of the previously captured
black-box sequence diagrams and are utilized to identify the interfaces of the physical
subsystems. In white-box sequence diagrams, the system life-line is split into a set of
subsystem lifelines. Based on the allocation defined in the white-box activity diagram, the
subsystem operational contracts are placed on respective subsystem lifelines. In order
to maintain the initial functional flow, service requests from one physical subsystem to
the other may need to be generated. They define the interfaces between the subsystems.

In the example shown in figure 10, the implementation concept was that LRU1 was con-
sidered the commander’s input/output (I/O) device. Most of the identified functionality
had to be implemented in LRU5. The CITV control had to be in LRU6. In this scenario,
LRU4 served as a gateway between LRU1 and LRU5. By mapping the use case scenario to
the physical architecture, the links and the associated ports and interfaces are defined for
each involved physical subsystem. For each physical subsystem, the associated state-based
behavior is captured in a statechart diagram. These statechart diagrams will extend incre-
mentally with each mapped use case scenario.

SysML-based systems engineering using a model-driven development approach.
Page 16

The outlined process is performed iteratively for all black-box scenarios. Figure 11 shows
the final result. Figure 12 depicts the chosen architectural design and resulting physical
subsystem interfaces by means of an N-squared (N2) chart. An N2 chart is structured by
locating the nodes of communication on the diagonal, resulting in an NxN matrix for a
set of N nodes. For a given node, all outputs (SysML-required interfaces) are located in a
row of that node, and inputs (SysML-provided interfaces) are in the column of that node.

The correctness and completeness of the system architecture model are checked through
model execution. Once the model functionality is verified, the architectural design can be
analyzed with regard to the performance and safety requirements. The analysis typically
includes failure modes effects analysis (FMEA) and mission criticality analysis.

Figure 11. Activity operational contracts allowed to an LRU network architecture

SysML-based systems engineering using a model-driven development approach.
Page 17

Figure 12. Documentation of physical subsystem interfaces by means of an N2 chart

Subsystem architectural design

This phase focuses on the implementation of the allocated operational contracts. Decisions
are made as to which operational contracts in a physical subsystem should be implemented
in hardware (e.g., mechanical or ASIC) and which should be implemented in software. For
operational contracts that span more than one domain, further analysis will be needed.
Subsystem domain experts may participate in this analysis.

Once the hardware/software design decisions are made, the workflow is similar to the one
outlined in the system architectural design phase. In each white-box use case scenario, the
physical subsystem lifelines are split into hardware and/or software lifelines, each repre-
senting a subsystem component. Based on the chosen hardware/software design concept,
operational contracts are placed on the respective subsystem component lifelines and the
associated functional flow between subsystems and subsystem components established
through respective service requests (figure 13). Thus, subsystem component ports and
interfaces are defined. For each physical subsystem component, the associated state-based
behavior is captured in a statechart diagram. These statechart diagrams will extend
incrementally with each white-box use case scenario.

SysML-based systems engineering using a model-driven development approach.
Page 18

The outlined process is performed iteratively for all white-box scenarios. The final
deployment architecture is verified through regression testing.

At the end of the system architectural design phase, the deployment model is imported
into the model/requirements repository, and the hardware/software assigned operational
contracts are linked to the original requirements. For each physical subsystem, the follow-
ing documents are generated from the deployment model as hand-offs to the subsequent
hardware and software design:

Hardware/software requirements specification
Logical interface control document (N2 chart)
Subsystem/subsystem component test vectors derived from system-level use case scenarios

Figure 13. Subsystem architectural design: decomposition of LRU5 (WB scenario figure 10)

SysML-based systems engineering using a model-driven development approach.
Page 19

Conclusion

This article demonstrated that SysML, a subset of UML 2.0, is the right approach to stan-
dardize model-based, function-driven systems engineering. In the context of a common,
paradigm-independent modeling language for both systems engineers and software engineers,
SysML may be considered as a “dialect” of UML. Based on the preliminary specification
of SysML (Rel. 0.98), an integrated systems/software development process could be defined
allowing a seamless transition between the two domains.

For more information

To learn more, please visit:

www.telelogic.com

file://localhost/Users/sbohner/Library/Mail%20Downloads/www.telelogic.com

© Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2008
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, and
Telelogic are trademarks or registered trademarks
of International Business Machines Corporation in
the United States, other countries, or both. If these
and other IBM trade-marked terms are marked
on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned
by IBM at the time this information was published.
Such trademarks may also be registered or com-
mon law trademarks in other countries. A current
list of IBM trademarks is available on the Web at
“Copyright and trademark information” at ibm.
com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products and
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change
by IBM without notice. IBM shall not be respon-
sible for any damages arising out of the use of, or
otherwise related to, this documentation or any
other documentation. Nothing contained in this
documentation is intended to, nor shall have the
effect of, creating any warranties or representations
from IBM (or its suppliers or licensors), or altering
the terms and conditions of the applicable license
agreement governing the use of IBM software.

RAW14055-USEN-00
4263_2_0810_US

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

