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Traditional systems development methods are designed to create a ‘‘point solution’’–

that is, a solution for a specific and static set of requirements. These methods result in

systems that are sluggish in their response to dynamic conditions and changing

requirements, expensive to maintain over extended periods of time, and prone to

system failure. As an alternative to this approach, this paper describes a model-driven

approach to systems development, which extends traditional systems engineering

methods and is well-suited to a systems development environment characterized by

rapidly changing conditions and requirements. We describe how model-driven

systems development is performed by using the RUPt SE (Rational Unified Processt

for Systems Engineering) architecture framework and transformation methods, which

have been refined over eight years of field experience by Rationalt, IBM, and our

clients.

INTRODUCTION

According to conventional wisdom, software and

systems projects are seldom successful because

success is defined as the delivery of systems that

perform as promised, on time, and within budget.

According to a report published in Crosstalk, the

Journal of Defense Software Engineering in 2003, $84

billion was spent on projects that were never

finished, and $192 billion was spent on projects that

were significantly late and over budget.
1

There can be many explanations for this state of

affairs, including the need for a redefinition of

success in this context. This redefinition would

encompass the delivery of systems that meet a

variety of stakeholder needs, including content,

cost, and schedule. It would allow for the likelihood

of improving understanding of stakeholder needs as

a program proceeds. Nevertheless, there is some

consensus in a variety of contexts that fundamental

change is needed in the way systems development is

conducted in order to create systems that are agile in

response to dynamic conditions and requirements.

As stated by Alberts, Garstka, and Stein, ‘‘A

fundamental lesson that has emerged from multiple

domains, including business operations, product

development, and defense, is that the power of a

new technology cannot be fully exploited to create

competitive advantage without the simultaneous co-

evolution of organization and process.’’
2
Among the
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characteristics of the new systems required by

today’s environment are tighter collaboration

among the engineering disciplines involved in

systems development and operational collaboration

among members of extended enterprises.

In business, supply chain management creates

value; the more tightly supply chains are integrated,

the more value they create. Hence, the participants

in a supply chain strive to integrate their operations

and data and, at the same time, maintain unique

business processes that create competitive advan-

tage. In warfare, providing the right information at

the right time to the right participant supplies a

critical advantage. In defense and industry, this

creates a need for components that are loosely

coupled for architectural benefits such as maintain-

ability and extensibility, yet tightly integrated to

interact efficiently. In addition, as the components

become more tightly integrated operationally, func-

tionality is naturally redistributed as the collabo-

rations are understood, which naturally results in

higher capabilities and fewer components.

The plethora of poor development outcomes is not

so much the result of incompetent execution of

traditional processes, but rather the result of the

inadequacy of the processes themselves to deliver

modern collaborative systems. Traditional systems

development methods, based on a static and

predictable set of requirements, are limited in their

capability to address the challenges of operational

integration, effective information sharing, and the

increasing volatility of requirements. These methods

were designed to create a ‘‘point solution,’’ and an

essential assumption of these methods is that

requirements must be well understood before

development can go forward. As requirements

volatility increases, such methods become less

viable. Further, experience has shown that tradi-

tional requirements-driven methodologies result in

systems that are limited in their capability to self-

modify in response to evolving mission or business

needs, brittle and difficult to manage in adapting to

new requirements, and expensive to maintain over

an entire product life cycle.

Systems engineering methods have to be extended

in order to develop collaborative and agile systems

throughout a broad set of application domains,

including business-structure analysis, value-chain

collaboration, and warfare. This paper describes a

model-driven approach to systems development that

extends traditional systems engineering methods

and is well-suited to address the additional systems

development concerns we have described.

Systems
A system is a set of resources that is organized to

provide services. The services enable the system to

fulfill its role in collaboration with other systems to

meet some useful purpose. Systems may consist of

combinations of hardware, software (including

firmware), workers, and data. This definition of

systems is extremely general: a product, such as an

automobile or a computer, is a system; a business or

its components are also systems. Businesses may be

organized into larger enterprises that are also

systems, e.g., the health-care system.

Systems can be characterized by their attributes,

which can be grouped as follows: ‘‘Black box’’

attributes are a system’s externally observable

characteristics, including the services that it pro-

vides. ‘‘White box’’ attributes are the resources that

comprise the system. A white-box view is a

representation that reveals the internal aspects of

the subject under consideration. The system’s

white-box resources are encapsulated in its black-

box services.

Systems development may be thought of as the

specification of the black-box attributes of the

system (i.e., its requirements) and the delivery of

the integrated system components that meet the

requirements (i.e., its implementation or realiza-

tion). An implementation describes how an item is

constructed or computed. For example, a class is an

implementation of a type; a method is an imple-

mentation of an operation.

At a high level, a service is a mechanism by which

the needs or wants of the requestor are satisfied. In a

given context, the term ‘‘service’’ represents either a

service specification or a service implementation, or

both. A service specification is the definition of a set

of capabilities that fulfill a defined purpose. In

model-driven systems development (MDSD), a ser-

vice specification can be a Systems Modeling

Language (SysML**)
3
interface. SysML is an adopt-

ed extension to the OMG** UML** (Unified

Modeling Language**) standard that supports sys-

tems engineering. It is to hardware products and

systems what UML is to software architecture and

systems. To represent today’s product embedding

both hardware and software, both SysML and UML
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are used in a common setting. A service implemen-

tation realizes the behavior described in the service

specification and fulfills the service contract. In

MDSD, the service implementation is represented by

the logical and physical projections (known as

‘‘viewpoints’’) of the model.

A model is defined as a collection of all the artifacts

that describe the system. Generally, model-driven

development (MDD) is a technique for addressing

complex development challenges by dealing with

complexity through abstraction. Using this techni-

que, complex systems are modeled at different

levels of specificity. As the development program

proceeds, the model undergoes a series of trans-

formations, with each transformation adding levels

of specificity and detail. For the development of

complex systems, MDSD begins with the black-box

specification of the system and, through a rigorous

process of transformation, creates a model of the

system; this model is ultimately realized with tested

and functioning system components.

The classical notion of a black-box and white-box

characterization of a system is well-suited to an

MDSD approach. The process of starting with an

external view of a system’s behavior and deriving

specifications for the components and their integra-

tion in a semantically rigorous framework is

achieved by model transformation. As we will

describe next, this overall transformation from

external view to component specification and

integration is decomposed into several sub-trans-

formations that account for multiple sets of engi-

neering concerns.

Systems development approaches

Traditional requirements-driven systems develop-

ment methods were developed before the Internet

era. The purpose of life-cycle reviews in the tradi-

tional development environment was to synchro-

nize a program’s cost, schedule, and technical

baselines in order to review the program in its

entirety. Such reviews necessarily relied upon paper

documents because of the inability of early infor-

mation systems to provide electronic reviews of

such programs. Hence a practice of paper-oriented

life-cycle reviews was built around available tech-

nology, and this practice continues to this day.

Technology has changed. Object-oriented software

development has led to the development of systems

models to characterize complex behaviors. Further,

current database and Web technology may be

applied to enable new development methods.

Effective exploitation of new technologies requires

adoption of new processes. In this spirit, this paper

describes an MDSD method that replaces traditional

requirements-driven systems development methods.

Requirements-driven systems development
methods
Requirements-driven systems development methods

define requirements early in the life cycle, after

which the techniques of functional decomposition

are applied to determine the mapping of require-

ments to system components. At every level of the

hierarchy, functional analysis derives requirements,

and engineering methods derive measures of effec-

tiveness. Once the requirements are described in

sufficient detail, detailed design activities begin.

This process is defined in Reference 4 and else-

where.

As systems become more complex and integrated,

with fewer components delivering more capability,

this traditional approach becomes unwieldy due to

the large number of possible mappings. It is

common for a modern system, such as an automo-

bile, to have thousands of detailed requirements and

thousands of components, resulting in millions of

possible mappings. Faced with this dilemma,

developers limit the level of integration, resulting in

systems that may be highly capable but are brittle

and difficult to maintain.
5
MDSD methods mitigate

this explosion of mappings by providing levels of

abstraction.

The development team must understand the mission

and concerns of the business and how the proposed

system relates to them. To ensure that the system

indeed satisfies its intended purpose, the develop-

ment team must establish that the top-level system

requirements and the requirements derived from

them are satisfied by the collaboration of the

system’s components. MDSD must address these

system concerns, and, at the same time, provide the

development team with an improved understanding

of the system, its goals, and its components.

A model-driven systems development approach
MDSD must build upon the techniques of require-

ments-driven development methods in light of their

historic success, but, for reasons described previ-

ously, a change in the approach to systems devel-

opment is required. MDSD starts with system

decomposition, that is, the division of a system into
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elements in order to improve comprehension of the

system and the way in which it meets the needs of

the user. Because of the limited capability of

humans to understand complexity, a ‘‘divide and

conquer’’ system decomposition approach is appro-

priate.
4
In this approach, the system is decomposed

into a comprehensible set of elements, each of

which has a comprehensible set of requirements.

Sometimes, to manage complexity in very large

systems, system decomposition must be applied

recursively.

Effective application of system decomposition re-

quires the means of modeling the system from a

variety of viewpoints and at increasing levels of

specificity. In addition, a set of transformations

between model levels is required as a basis of the

development process. These transformations pro-

vide a means of deriving the next level of specificity

while maintaining traceability and coherence for the

entire model. MDSD consists of creating the model

artifacts as a means of specifying the system

elements and their integration. An artifact is defined

as any item that describes the architecture, including

a diagram, matrix, text document, or the like. This

model provides a common means for facilitating

collaboration across the engineering disciplines,

coordinating iterative development methods, and

assigning technical and managerial responsibilities.
6

In this paper, we describe an MDSD modeling

framework, the Rational Unified Process* for

Systems Engineering (RUP* SE), and some of its

fundamental transformation methods. This MDSD

framework and its associated transformation meth-

ods have been refined over eight years of field

experience by Rational*, IBM, and our clients.
7–9

A comprehensive treatment of MDSD is beyond the

scope of this paper. We provide a brief introduction

to this field and supply references to more extensive

treatments of the topics touched upon. A discussion

of the underlying framework for modeling systems

is presented in the section ‘‘The RUP SE architecture

framework.’’ This framework provides the setting

for the transformations. The section ‘‘Modeling

Languages and MDSD’’ is a discussion of the use of

SysML to capture some of the key framework

artifacts. The generation of the artifacts requires

some specific transformation methods, described in

the section ‘‘Transformation methods.’’

Finally, we conclude with a precise description of

the framework captured in a RUP SE metamodel.

This metamodel is implemented as a profile for

SysML (and for UML when RUP SE concepts apply

to the software part of the system). The metamodel

therefore adds specific semantics to enable these

languages to handle our framework. Thus, the

various models shown in this paper are represented

using RUP SE semantics that extend SysML, making

them, in that sense, RUP SE models. Although this

approach is appropriately supported by a modeling

language such as SysML (and its toolset), it is

actually independent of any language.

THE RUP SE ARCHITECTURE FRAMEWORK

The RUP SE architecture framework provides sup-

port for constructing a sound architecture on the

basis of four principles: separation of concerns,

integration, system decomposition, and scalability.

Separation of concerns allows designers to address

each set of stakeholder concerns independently;

integration is achieved by requiring the use of a

common set of design elements across multiple sets

of concerns. System decomposition subdivides the

system by structure, rather than by function,

enabling the framework to provide levels of struc-

ture that enable parallel development; and scalabil-

ity is achieved by using the same framework,

whether the system under consideration is an

enterprise or a product component or anything in

between.

In this section we provide an overview of the

framework and the reasoning underlying its design.

In addition to the discussion here, a detailed

description is provided in the section ‘‘RUP SE

metamodel’’ at the end of this paper.

Like many frameworks, the RUP SE framework

consists of two kinds of artifact: static artifacts,

namely, representations of the system in its context

and the things that comprise the system; and

dynamic artifacts, namely, how the static elements

collaborate to fulfill their role in the system. The

static artifacts enable separation of concerns and

scalability and provide the semantics for system

decomposition. The dynamic artifacts enable inte-

gration of concerns. We discuss both types of

artifact in the following sections.

Table 1 illustrates the RUP SE architecture static

framework. The framework consists of three types
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of element:model levels, viewpoints, and views, each

of which is described in detail in the following

subsections. In the representation of Table 1, the

rows represent model levels (context, analysis,

design, and implementation levels), the columns

represent viewpoints (worker viewpoint, logical

viewpoint, information viewpoint, etc.), and the

cells represent views (e.g., the worker viewpoint at

the design level).

While Table 1 describes the framework elements at

a high level, the metamodel described in the

section ‘‘The RUP SE metamodel’’ provides a more

complete description of the elements and their

relationships.

Model levels

A model level is defined as a subset of the

architecture model that represents a certain level of

specificity (abstract to concrete); lower levels

capture more specific technology choices. Model

levels are not levels of abstraction; in fact, a model

level may contain multiple levels of abstraction.

Model levels are elements designed to group

artifacts with a similar level of detail. The MDSD

transformations occur between the model levels.

Table 2 describes the four model levels expressed in

the framework.

The context level treats the entire system as a single

entity, a black box. This level addresses the system’s

interaction with external entities. At the analysis

level, the system’s internal elements are identified

and described at a relatively high level. Which

elements are described at this level depends upon

the viewpoint. For example, in the logical view-

point, subsystems are created to represent abstract,

high-level elements of functionality. Less abstract

elements are represented as sub-subsystems, or

classes. In the distribution viewpoint, ‘‘localities’’

are created (as described later in the paper) to

represent the places where functionality is distrib-

uted.

At the design level, the decisions that drive the

implementation are captured. In the transition from

the analysis level to the design level, subsystems,

classes, and localities are transformed into hard-

ware, software, and worker designs. This is not a

Table 1 The RUP SE architecture framework. The cells of this table show sample model views.

Model Viewpoints

Model Levels Worker Logical Information Distribution Process Geometric

Context Role definition,
activity modeling

Use case
diagram
specification

Enterprise
data view

Domain-dependent
views

Domain-
dependent
views

Analysis Partitioning
of system

Product
logical
decomposition

Product data
conceptual
schema

Product
locality view

Product
process view

Layouts

Design Operator
instructions

Software
component
design

Product data
schema

ECM (electronic
control media)
design

Timing
diagrams

MCAD
(mechanical
computer-assisted
design)

Implementation Hardware and software configuration

Table 2 Model levels in the RUP SE architecture

framework

Model Level Expresses

Context System black box—the system and
its actors (though this is a black-box
view for the system, it is a white-box
view for the enterprise containing the
system)

Analysis System white box—initial system
partitioning in each viewpoint that
establishes the conceptual approach

Design Realization of the analysis level in
hardware, software, and people

Implementation Realization of the design model into
specific configurations
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direct mapping from system elements to designs;

rather, design decisions are made by deriving the

design from the functionality represented in the

subsystems and classes. These design decisions are

constrained by supplementary requirements and

distribution choices represented by the localities and

their attributes. The resulting design transformation

realizes all of the specifications from the analysis

level. In other words, the system architecture is

specified at the analysis level, creating requirements

that the design level must satisfy.

At the implementation level, decisions about tech-

nology choices for the implementation are captured.

Commercial products may be specified (e.g., a

messaging middleware product, a model and part

number for a piece of hardware), or items might be

specified for internal implementation. As before,

moving from the design level to the implementation

level is a transformation, but this time the mapping

is more direct. For example, at the design level, the

functional activities of a worker are mapped to a

position specification with a defined set of skills.

Then, at this level, the specification can be fulfilled

either by hiring someone with the correct skill set

(similar to choosing a commercial product with

certain capabilities) or by training an individual to

acquire the required skills (similar to doing an

internal implementation). This transformation of

worker activities to specific skills, though necessary

for the system to meet its goal, is not well under-

stood, and is seldom, if ever, practiced.

Viewpoints
A viewpoint is defined as a subset of the architecture

model that addresses a certain set of engineering

concerns. The same artifact may appear in more

than one viewpoint. Viewpoints allow framework

users to separately address different engineering

concerns while maintaining an integrated, consis-

tent representation of the underlying design. Table 3

describes the core RUP SE viewpoints.

The set of viewpoints is fluid and has grown over

time. Most development efforts do not require all of

the viewpoints shown in Table 3. Further, view-

points are extensible to address program domain-

specific needs, such as security or safety. Generally

these extended viewpoints can reuse the semantics

of the core set of viewpoints.

A particular viewpoint may not be useful at all

model levels. For example, hardware developers are

a category of (internal) program stakeholders con-

cerned with the allocation of functionality and

distribution of hardware within the system. How-

ever, at the analysis model level, decisions about

where functionality will be implemented (in hard-

ware, software, or workers) have not yet been

made. As a result, there is typically no need for a

hardware viewpoint at the analysis model level.

However, if the system involves actual hardware

development, then one certainly does need a

hardware viewpoint at the more specific (lower)

model levels.

Table 3 The core RUP SE viewpoints

Viewpoint Expresses Concern

Worker Roles and responsibilities
of system workers

Worker activities, human/system interaction,
human performance specification

Logical Logical decomposition of the
system as a coherent set of SysML
blocks that collaborate to provide
the desired behavior

� Adequate system functionality to realize use cases
� System extensibility and maintainability
� Internal reuse
� Good cohesion and connectivity

Distribution Distribution of the physical
elements that can host the
logical services

Adequate system physical characteristics to host
functionality and meet supplementary requirements

Information Information stored and processed
by the system

Sufficient system capacity to store data; sufficient system
throughput to provide timely data access

Geometric Spatial relationship between
physical components

Manufacturability, accessibility

Process Threads of control that carry out
computation elements

Sufficient partitioning of processing to support concurrency
and reliability needs
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Although different architectures require different

sets of viewpoints, almost all require the logical and

distribution viewpoints.

The viewpoints chosen in RUP SE have been

influenced by the ISO/ITU standard RM-ODP, the

Reference Model for Open Distributed Processing.
10

One other important standard that was influential in

determining how the viewpoints and views are

documented and how they relate to stakeholders

and their concerns is the ANSI/IEEE 1471-2000

standard, the IEEE Recommended Practice for

Architectural Description of Software-Intensive Sys-

tems.
11

Views

Views constitute the intersection of viewpoints and

model levels. Views contain artifacts (i.e., objects

used to document engineering data) that describe

how the viewpoint’s engineering concern is ad-

dressed at a particular model level. Table 1 includes

the set of view artifacts. In practice, each program

chooses the view artifacts that meet its individual

needs. The project’s set of view artifacts is what the

RUP calls the development case, which includes the

choice of artifacts and prescriptive guidance on how

to document them, along with guidelines, templates,

and checklists.

The framework may leave the impression that the

views contain unrelated artifacts. In reality, there

are many relationships between the artifacts. These

relationships are captured in the RUP SE metamodel

described in the final section of this paper.

MODELING LANGUAGES AND MDSD

SysML can be used to capture some of the key

artifacts of the RUP SE framework. As mentioned

previously, RUP SE augments this language to

support a richer framework by adding new seman-

tics. In this section, we introduce the syntax for

expressing some of the key concepts of the RUP SE

framework, along with their rationale. Because the

RUP SE metamodel is implemented as a profile of

SysML, it borrows the concrete syntax of SysML

(with the exception of the RUP SE locality, for which

it introduces a new concrete syntax, as we describe

later).

Key concepts

Two of the most important concepts related to the

use of SysML to capture the framework’s artifacts

are the distribution viewpoint and the idea of

context as used here.

Distribution viewpoint

Because systems include all of the resources (hard-

ware, software, workers, etc.) needed to provide

their services, systems analysis must include not

only the logical decomposition commonly found in

MDD frameworks, but also decomposition which

determines how the resources will be partitioned.

The initial partitioning of the system provides a

basis for reasoning about how the logical function-

ality will be distributed across the physical resourc-

es. Thus the distribution viewpoint is a critical

element of the RUP SE framework.

The distribution viewpoint describes how the

functionality of the system is distributed across

physical resources. At the analysis level, we need to

describe a generalized view of resources, capturing

the attributes needed to support the transformation

from analysis to design. Cantor introduced the

concept of locality
12

to represent a generalized

resource. Localities are linked to each other with

connections. A locality is defined as a member of a

system partition representing a generalized or

abstract view of the physical resources. Localities can

perform operations and have attributes appropriate

for specifying physical designs. Localities are

represented in SysML as stereotyped blocks with

tagged values that contain characteristics derived

from supplementary requirements, assigned techni-

cal risk, and cost. A stereotype is defined as a

variation of an existing SysML modeling element

that enables the use of platform or domain-specific

terminology or notation. The use of stereotypes is

the mechanism for extending SysML in a consistent

manner, and this is the mechanism used to imple-

ment the RUP SE metamodel.

Connections are defined as generalized physical

linkages in RUP SE. Connections are characterized

by what they carry or transmit and the necessary

performance and quality attributes in order to

specify their physical realization at the design level.

They are linked to the concept of a ‘‘Flow Port’’ in

SysML, which allows the designer to specify what

can flow through an association and its ports (data,

power, fuel, etc.). A RUP SE distribution diagram

showing two localities and a connection between

them is shown in Figure 1.
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Context

In UML-based software development, context mod-

eling consists of specifying software use cases. Some

authors, such as Conallen,
13

added diagram ele-

ments to enterprise use case diagrams to specify

which enterprise use cases are handled by the

software. In systems engineering, the concept of

context and context diagramming has a different

meaning, which, in fact, is more consistent with the

principles of model-driven development. In systems

engineering, context includes the set of things

(people, other systems, etc.) with which the system

interacts and how those interactions proceed so that

the system can fulfill its role in the enterprise.

In working with the systems community, who

typically interact with large teams requiring precise

communications, we found that the common in-

formal definition of a use case (namely, a descrip-

tion of a service that the software provides which

provides value to the actor) is inadequate for a

variety of reasons. A service (defined more precisely

in the following) is a behavior of a system. The

actual semantics of use cases more closely resemble

collaboration than behavior. Value is far too

subjective a term to be included in the definition of a

framework element. In any case, the entity receiving

benefit from the system behavior may not include

the actors in the collaborations. In addition, the

software definition of a use case does not provide for

scalability. In general, use case decomposition, like

all forms of behavior decomposition, does not

provide a robust framework for systems architec-

ture.

Hence we found it useful to revisit the notion of

context in defining the RUP SE framework. In the

following subsections, we extend the definitions of

‘‘actor’’ and ‘‘use case’’ from their software defini-

tion
14

to meet the needs of systems development.

We introduce system context diagrams for systems

modeling that go beyond software use case dia-

grams.

Use cases and actors

In RUP SE, an actor is anything that interacts with

the system. Examples of actors include users, other

systems, and the environment, including time and

weather. There is often confusion between ‘users’

and ‘workers.’ In systems engineering, users are

external to the system, and thus are considered

actors. Workers are a part of the system, and thus

are not actors. The specification of what is expected

of the workers in a system is captured in the worker

viewpoint.

In RUP SE, a use case is a sequence of events that

describes the collaboration between the system and

external actors to accomplish the goals of the

system. In other words, the use case is a way to

specify the behavior required of the system and

external entities in response to a given sequence of

stimuli.

Context diagrams

(Many of the ideas in this section stem from

conversations with Sanford Friedenthal of the

Lockheed-Martin Corporation.)

As defined previously, a system is a set of

collaborating resources that deliver services. In

particular, a system encapsulates the needed re-

sources to deliver those services. To fulfill its goal, a

system may rely on the services of others. Hence,

context in systems modeling is well-captured by

static diagrams capturing the actors with which the

system interacts and how the system and the actors

are related. Context varies according to viewpoint.

In the logical viewpoint, context relates to the static

relationships between the system and its actors. The

system in this viewpoint is represented as a classifier

with attributes and operations, organized into

interfaces. An interface is defined as a named set of

operations that characterize the behavior of an

element. An interface declares a set of public

features and obligations that constitute a coherent

Figure 1
Two localities and a connection

OI to eCP
<<connection>>

1..n

e-Commerce Processor

Online Interface
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service offered by a block (in SysML) or a classifier

(from UML 2.0). In the distribution viewpoint,

context relates to the physical relationships between

the system and the actors. In this viewpoint, the

system is a kind of locality. In the data viewpoint,

context relates to the relationships between the data

maintained by the system and the data maintained

by its actors.

Figure 2 includes an example of a RUP SE logical

context diagram. This diagram is identical to what

Lykins et al. call an elaborated context diagram in

Reference 15. Following the work of Friedenthal and

his colleagues, the diagram includes (in the logical

view context diagram) the stereotyped block ‘‘I/O

entity,’’ which has attributes and no operations. I/O

entities capture what passes between the system and

the actors. I/O entities may typically contain data,

but may also include physical things like power.

Figure 2 also includes a context diagram of a

distribution view. Although the system is both a

logical entity and a distribution entity, it is shown as

a class in the distribution view as a matter of style.

TRANSFORMATION METHODS
The RUP SE framework includes novel, related

artifacts for transformation methods between model

levels. The generation of these artifacts and their

relationships requires new techniques. These tech-

niques are described next.

System of systems decomposition
In this subsection, we describe a method of object-

oriented logical decomposition to describe a hier-

archical system of systems. Additionally, we discuss

a number of principles, found in traditional systems

development, that underpin the MDSD framework

discussed in this paper.

A system encapsulates the resources it requires to

deliver its services. Systems may be decomposed

into systems, each of which also encapsulates all of

their resources. Because systems control their

resources and may encapsulate other systems, a

‘‘system of systems’’ is a recursive pattern. A process

may therefore be applied to recursively decompose a

system into other systems, which are themselves

decomposed further. During such recursive decom-

position it is important to understand at which

‘‘level’’ in the hierarchy we stand during a dis-

cussion. Although terms such as ‘‘superordinate

system’’ and ‘‘subordinate system’’ are relevant

when discussing the pattern, it is sometimes more

useful to discuss ‘‘system levels’’ because more than

two levels may be considered.

The term ‘‘system level’’ indicates the relative

position in the overall hierarchy; ‘‘system level 1’’

represents the ‘‘root’’ system (by definition, there is

always exactly one ‘‘system level 1’’ system). An

overview of the key artifacts in two system levels is

shown in Figure 3. This figure shows the pattern

that allows the framework to support recursive

system decomposition. The dotted lines between the

systems indicate UML dependencies.

Operations analysis

Classical use case analysis is a form of requirements

decomposition; therefore, for reasons previously

described, it is inadequate to meet the needs of

systems development. In MDSD, the techniques of

use case analysis are extended to operations

analysis. Operations analysis consists of the fol-

lowing recursive pattern: (1) decompose the system

to create a context for the system elements; (2) treat

the system operations as use case scenarios for the

elements; (3) describe the scenarios in which the

elements, as black boxes, interact to realize the

system operations; and (4) derive the operations of

the elements from the scenarios.

This pattern can be applied starting at the enterprise,

which contains the system of interest (hence the

context level for the MDSD framework). In this

application of the pattern, the enterprise is treated as

a system and the system to be developed as a

component.

The system decomposition creates the context for

the elements; thus, context is maintained at every

level of the system hierarchy. The operations

analysis provides a method for creating traceability

between the use cases, which define the business or

mission needs, and the system components that

satisfy those needs. The maintenance of this context

at each level of the hierarchy was a key insight

during our development of the MDSD. The use cases

at the top level of the system hierarchy define the

interactions of the system with external entities in

order to fulfill its mission. These interactions are

analyzed to identify the operations that the system

provides in order to fulfill its role in the use cases.

Operations analysis forms the basis of the use case

realization. The operations are combined into

interfaces or services.
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Figure 2
Logical and distribution context for printer example: (A) logical view; (B) distribution view
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Figure 4 shows a sequence diagram illustrating the

realization of a use case initiated by a client

requesting the operation ‘‘step 1’’ from analysis

subsystem 1. This sequence diagram describes the

internal workings of the system and is therefore a

white-box view of the system that encapsulates the

analysis subsystems 1, 2, and 3. The diagram is also

a black-box view of the interactions between these

analysis subsystems. In the context of the overall

system this is a white-box view, but within this

white-box view are black-box views of the collab-

orations of the various analysis subsystems. For

analysis subsystem 2, the operations ‘‘step 2’’ and

‘‘step 4’’ are derived requirements in the context of a

black-box view of this subsystem.

Operations analysis uses sequence diagrams to

recursively derive system-component black-box

requirements at every level of the hierarchy. An

operation realization is created for each operation,

and the realization is performed concurrently across

the system components identified in the architec-

tural analysis activity.

Joint realization
In developing the system model, use cases are

written, system components are defined, and the

interactions between the components are described.

This is standard practice for modeling a system. For

large-scale developments, we must also decompose

the system, divide and suballocate the requirements,

and develop links for traceability purposes. The new

mechanism for connecting all of these items is a

Joint Realization Table (JRT). The joint realization

method is how the JRT is completed and is therefore

Figure 4
Sequence diagram for operations analysis
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the process by which decomposition is accom-

plished within MDSD.

In MDSD, we distinguish between functional re-

quirements and nonfunctional requirements (NFRs).

Functional requirements describe the system be-

havior as well as the collaboration among system

components to accomplish the system behavior.

NFRs pertain to how a system performs its functions

and include concerns such as quality, quantity, and

timeliness.

JRTs decompose the system in the context of the

logical and physical architectures and, at the same

time, assign nonfunctional requirements to these

system components. In a real sense, this is the

missing link—the item that was needed to connect

object-oriented development models to the needs of

the engineering community developing large-scale

systems.

A JRT example that decomposes the task of printing

a page is found in Table 4. The header material for

the Build Page operation provides context for

elaborating the JRT. This JRT decomposition allo-

cates the functionality of the single black-box

operation to white-box printer entities. The Action

Performed column captures both the logical entity

performing the action and the logical step per-

formed. In this example, two logical entities, I/O

Services and Raster Image Processing, collaborate to

print a page. NFRs are allocated to the logical white-

box steps in the White Box Budgeted Requirements

column—for example, 10 milliseconds are allocated

to the I/O Services to receive and store an available

data block in memory. The last two columns

provide the distribution and process references. In

this example the printer-control-unit locality and

Data_rec process must perform the task of receiving

a block and putting it into memory within 10

milliseconds.

The JRT maintains context, captures the logical and
distribution decomposition, and provides for the
allocation of nonfunctional requirements. With the
JRT in place, it is useful to represent the content in
SysML as a coupled set of sequence diagrams
showing the same flow in the different viewpoints.
Figure 5 shows the sequence diagrams for the print
page service. The insights gained by modeling the
various elements (analysis subsystems, localities,
etc.) may lead to their refactoring and refinement
until the needed set of interactions are identified and

Table 4 Partial JRT for printing a page

White-Box
Step Action Performed

White-Box
Budgeted Rqts

Distribution
Reference
(Locality) Process Reference

1 LRF1: I/O Services
WBS1: receives the block and
stores in an available data
buffer in memory

SUP1: 10 ms DRF1:
Printer Control Unit

PRF1:
Data_rec

2 LRF2: I/O Services
WBS2: updates the Input Data
Buffer Queue with the address
of the received block and sends
the awaiting process input data
buffer queue address list to the
Raster Image Processing subsystem.

SUP2: 2 ms DRF2:
Printer Control Unit

PRF2:
Input_data_buff_mgt

3 LRF3: Raster Image Processing
WBS3: reads the buffer queue
address list and begins reading the
data blocks. As the blocks are
processed, one or more page bitmaps
are rendered to memory and
stored in available page bitmap buffers.

DRF3:
Printer Control Unit

PRF3:
Page_RIP

4 LRF4: Raster Image Processing

WBS4: indicates the input data block
is available for reuse after the block
is read and processed.

DRF4:
Printer Control Unit

PRF4:
Input_data_buff_mgt
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Figure 5
Logical and distribution sequence diagrams for print page flow: (A) logical view; (B) distribution view
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Figure 6
Association of logical entities, localities, and interfaces: (A) logical view; (B) distribution view
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assigned to them. The candidate operations may
also be refactored and refined as a result of the
insights gained from the model.

Next, we must link the information in the JRT to a

model of the system. To do so, it is necessary to

identify the subsets of operations that are performed

by a particular locality. Examples from the JRT are

the ‘‘receive’’ and ‘‘store block’’ operations, which

are performed by both the I/O-services subsystem

and the printer-control-unit locality. An initial set of

interfaces can be derived by considering the map-

ping of operations to localities. In addition, cohesion

principles should be applied to specify interfaces

and then the mapping of operations to localities

should be used as a check to ensure that the

minimum requirement (the ‘‘split’’ of operations

across localities for a given analysis subsystem) is

satisfied. The resulting analysis-level logical and

distribution views are shown in Figure 6.

The NFRs associated with operations are handled

using the same approach through all levels of the

architecture in successively more detail until suffi-

cient detail is developed to implement the oper-

ations. The NFRs not associated with operations are

budgeted directly to localities by using standard

techniques from systems engineering.

Requirement derivation
With current requirements-driven development

methods, the system’s NFRs are often found in a

software requirements specification or similar

document. The engineers decompose the functional

requirements and then document them in a speci-

fication tree. The objective is to continue to

suballocate functionality into ever-finer levels of

granularity until the details are sufficiently docu-

mented for development to proceed.

MDSD differs from this approach by decomposing

the system into components, in contrast to tradi-

tional methods that decompose the requirements

into a specification tree. MDSD is able to recursively

define the component architecture at each level of

the hierarchy; after this, the NFRs are suballocated

to the components. The JRT is used in this approach

to link the system behavior, logical components,

physical components, and NFRs into a coherent

model that maintains context and traceability

throughout the system analysis. With this method,

MDSD provides a robust means for system decom-

position and modeling.

THE RUP SE METAMODEL

The RUP SE metamodel
16

is implemented by using

UML and SysML. An author of this paper (Balmelli)

is one of the lead authors of the submission for the

SysML language accepted by the Object Manage-

ment Group, Inc., an industry consortium generat-

ing the SysML specification as a response to its RFP

(request for proposal).

The semantics in these languages are sufficient for

most viewpoints. However, the distribution view-

Figure 7
Metamodel representation of a system (partial)
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point actually introduces (through the RUP SE

metamodel) novel concepts whose implementation

requires some care.

In modeling terms, we define a system as shown in

Figure 7. In this figure, we use the Meta-Object

Facility (MOF**)17 as a means to represent the

metaclasses that form a system. The metaclasses in

this model formally support the MDSD framework.

Together they form the metamodel, which is

implemented by applications supporting the RUP SE

framework. The metamodel describes an abstract

syntax and rationalizes our method. The applica-

tions that support this metamodel make use of a

concrete syntax (or notation) to represent these

concepts (e.g., graphically). The complete meta-

model supporting RUP SE is available in a specifi-

cation
16

that describes the formal aspects of our

framework.

As explained previously, RUP SE includes the novel

concept of localities.We implement this concept with

SysML blocks. Connections, that is, communication

links between localities, are implemented by using

Flow Parts, Item Flows, and Flow Specifications. The

attributes are defined according to the application. To

keep our framework flexible, localities (as well as

other types of system elements) are modeled using a

profile extension to the RUP SE metamodel. This is

also true for viewpoints and model levels.

CONCLUSION

In this paper, we have summarized the key elements

of model-driven systems development, illustrating

the method with an example involving the use of a

mainframe printer model.

Because MDSD is built from system first principles,

it applies to a wide variety of systems, including

intelligence information systems, electronic prod-

ucts, and embedded devices. MDSD scales from

small to large projects and has been used success-

fully on a wide range of development programs.

MDSD treatment of functional requirements, in-

cluding analysis of the system context, leads to

robust solutions that provide a solid basis for

evolving the system as stakeholder needs change.

Because MDSD is based on system decomposition

rather than requirements decomposition, the re-

sulting systems are better suited for internal reuse.

The MDSD joint realization method focuses atten-

tion on system specification at each level of

specificity, encourages cross-domain collaboration,

and facilitates traceability of model elements from

system requirements.

MDSD continues to evolve. With the growing

complexity of products and Web-based integration,

there is a greater interest in ‘‘system thinking’’ in

many development organizations. As this trend

continues, we expect that MDSD principles will

evolve further and that industry-specific usage

patterns will emerge.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Object
Management Group, Inc. in the United States, other countries,
or both.
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