
3 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

problems of a complexity they never dreamed
of in the early days of programming.

Model-driven development1,2 is a natural
continuation of this trend. Instead of requiring
developers to spell out every detail of a sys-
tem’s implementation using a programming
language, it lets them model what functionality
is needed and what overall architecture the sys-
tem should have. Nowadays, compilers auto-
matically handle issues such as object alloca-
tion, method lookup, and exception handling,
which were programmed manually just a few

years ago. By raising abstraction levels still fur-
ther, MDD aims to automate many of the com-
plex (but routine) programming tasks—such as
providing support for system persistence, inter-
operability, and distribution—which still have
to be done manually today.

Because of MDD’s potential to dramatically
change the way we develop applications, com-
panies are already working hard to deliver sup-
porting technology. However, there is no uni-
versally accepted definition of precisely what
MDD is and what support for it entails. In par-
ticular, many requirements for MDD support—
where they’ve been identified—are still implicit.
So, after reviewing the underlying motivations
for MDD, this article sets out a concrete set of
requirements that MDD infrastructures should
support. It then analyzes the technical implica-
tions of these requirements and offers some ba-
sic principles by which they can be supported.

focus
Model-Driven Development:
A Metamodeling
Foundation

E
ver since human beings started using computers, researches have
been working to raise the abstraction level at which software en-
gineers write programs. The first Fortran compiler was a major
milestone in computer science because, for the first time, it let pro-

grammers specify what the machine should do rather than how it should do
it. Since then, engineers have continued apace to raise programming ab-
straction levels. Today’s object-oriented languages let programmers tackle

model-driven development

Although metamodeling is an essential foundation for model-driven
development, the traditional “language definition” interpretation of
metamodeling doesn’t meet all the technical requirements for an MDD
infrastructure. However, it can easily be extended to provide the
necessary support.

Colin Atkinson, University of Mannheim

Thomas Kühne, Darmstadt University of Technology

Requirements for model-driven
development

The underlying motivation for MDD is to
improve productivity—that is, to increase the
return a company derives from its software
development effort. It delivers this benefit in
two basic ways:

� It improves developers’ short-term pro-
ductivity by increasing a primary software
artifact’s value in terms of how much
functionality it delivers.

� It improves developers’ long-term produc-
tivity by reducing the rate at which a pri-
mary software artifact becomes obsolete.

The short-term productivity level depends
on how much functionality you can derive
from a primary software artifact. The more
executable functionality it can generate, the
higher the productivity will be. To date, most
tool support for MDD centers on this form of
productivity; most tool vendors have focused
their efforts on automating code production
from visual models. However, this addresses
only one of the two main aspects of MDD.

The long-term productivity level depends
on a primary software artifact’s longevity. The
longer an artifact stays valuable, the greater its
return on investment will be. Thus, a second
and strategically more important aspect of
MDD is reducing primary artifacts’ sensitivity
to change. Four main fundamental forms of
change are particularly important:

1. Personnel. As long as developers store vital
development knowledge in their minds, soft-
ware organizations run the risk of losing
such information through personnel fluctu-
ations, which are all too frequent. To ensure
that software artifacts outlive their creator’s
tenure, they must be accessible and useful to
as wide a range of people as possible. In ad-
dition to being presented concisely, software
artifacts should take a form that all inter-
ested stakeholders, including customers, can
understand easily. Technically this implies
that software artifacts must be described us-
ing a concise and tailorable notation.

2. Requirements. Changing requirements have
always been a big problem in software engi-
neering, but never more than today. Not
only must developers supply new features
and capabilities at an ever-increasing rate,

but the impact of these changes on the sys-
tem’s existing parts must be low in terms of
maintenance efforts and disrupting online sys-
tems. They can’t simply take enterprise appli-
cations offline for extended periods of time to
extend the system; they must realize changes
while a system is running. At a technical level,
this implies the need to support the dynamic
addition of new types at runtime.

3. Development platforms. Primary software
artifacts that are tied to one tool are only
useful for the lifetime of that tool. But be-
cause tools are constantly evolving, it’s ob-
viously advantageous to decouple artifacts
from their development environments.
Thus, another technical requirement is that
tools should store artifacts in formats that
other tools can use; they should support
high interoperability levels.

4. Deployment platforms. As soon as devel-
opers master one new platform technology,
another comes along to take its place. To
increase primary software artifacts’ life-
time, developers must shield them from
changes at the platform level. Technically
this means that, to the greatest possible ex-
tent, they must automate the process of ob-
taining platform-specific software artifacts
from platform-independent ones by apply-
ing user-definable mappings.

These forms of change can happen concur-
rently, so the techniques for accommodating
them must at least be compatible with one an-
other, and at best complement each other syn-
ergistically. However, before we enhance and
combine existing techniques for this purpose,
let’s summarize the technical requirements
these techniques should support. An MDD-
supporting infrastructure must define

1. The concepts available for creating models
and the rules governing their use

2. The notation to use in depicting models
3. How the model’s elements represent real-

world elements, including software artifacts
4. Concepts to facilitate dynamic user exten-

sions to model concepts, model notation,
and the models created from them

5. Concepts to facilitate the interchange of
model concepts and notation, and the mod-
els created from them

6. Concepts to facilitate user-defined mappings
from models to other artifacts, including code

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 3 7

The underlying
motivation for

MDD is to
improve

productivity.

Having clarified what capabilities we would
like an MDD infrastructure to provide, we can
look at how to satisfy these requirements.

Toward an MDD infrastructure
Based on these requirements, it’s clear that

one of the technological foundations for MDD
support is visual modeling. Visual modeling
not only directly addresses Requirements 1–3
just described, but also has a long record of
success in various engineering disciplines—in-
cluding software engineering—as a way of ef-
fectively using human visual perception.

The technology with the best track record
for supporting flexible language extension is
object orientation. By letting developers ex-
tend the set of available types, object-oriented
languages directly support Requirement 4, al-
beit in a static (that is, offline) way. Object-
orientation is therefore generally regarded as
one of the other key foundations of MDD.

Finally, the approach that’s been most effective
at addressing Requirements 5 and 6 defined ear-
lier is the use of metalevel description techniques.
These are vital for providing dynamic as well as
static support for Requirement 4. With metalevel
description techniques of modeling constructs
and user types, you can fully customize models
to a certain domain, or class of stakeholders,
and add new types dynamically at runtime.

The challenge we face in creating an infra-
structure for MDD, therefore, is optimally inte-
grating visual modeling, object orientation, and
metalevel description techniques. We will first
analyze the existing approach for doing this and
then suggest some enhancements that better ad-
dress all six technical requirements listed earlier.

Traditional MDD infrastructure
Figure 1 illustrates the traditional four-

layer infrastructure that underpins the first

generation of MDD technologies—namely the
Unified Modeling Language3 and the Meta-
Object Facility.4

This infrastructure consists of a hierarchy of
model levels, each (except the top) being char-
acterized as an instance of the level above. The
bottom level, M0, holds the user data—the ac-
tual data objects the software is designed to
manipulate. The next level, M1, is said to hold
a model of the M0 user data. User models re-
side at this level. Level M2 holds a model of
the information at M1. Because it’s a model of
a model, it’s often referred to as a metamodel.
Finally, level M3 holds a model of the infor-
mation at M2, and therefore is often called the
meta-metamodel. For historical reasons, it’s
also referred to as the Meta-Object Facility.

This venerable four-layer architecture has
the advantage of easily accommodating new
modeling standards (for example, the Common
Warehouse Metamodel) as MOF instances at
the M2 level. MOF-aware tools can thus sup-
port the manipulation of new modeling stan-
dards and enable information interchange
across MOF-compatible modeling standards.

Although it’s been a successful foundation
for first-generation MDD technologies, this
traditional infrastructure doesn’t scale up well
to handle all technical Requirements 1–6 de-
scribed earlier. In particular, we can identify
four key problems:

� No explanation exists of how entities in
the infrastructure relate to the real world.
Does the infrastructure accommodate
real-world elements or do they lie outside?

� The infrastructure implies that all instance-
of relationships between elements are funda-
mentally of the same kind. Is this a valid ap-
proach or should we be more discriminating?

� No explicit principle exists for judging at
which level a particular element should re-
side. Using a single instance-of relationship
to define the metalevels always seems to
introduce inconsistencies. Can we use in-
stantiation to define metalevel boundaries
and, if so, how?

� A preference exists for using metalevel de-
scription (sometimes in the form of stereo-
types) to provide predefined concepts. How
can we integrate the other way of supplying
predefined concepts—libraries of (super-)
types, to be used or specialized—within the
architecture?

3 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

M3

M2

M1

M0

Meta-Object Facility

UML concepts

User concepts

User data

instance_of

instance_of

instance_of

Figure 1. Traditional
Object Management
Group modeling
infrastructure.

To address these problems, we must adopt a
more sophisticated view of metamodeling’s role
in MDD and refine the simple one-size-fits-all
view of instantiation. Regarding all instance-of
relationships as being of essentially the same
form and playing the same role doesn’t scale up
well for Requirements 1–6. Instead, it’s helpful
to identify two separate orthogonal dimen-
sions of metamodeling, giving rise to two dis-
tinct forms of instantiation.5,6 One dimension
is concerned with language definition and
hence uses linguistic instantiation. The other
dimension is concerned with domain defini-
tion and thus uses ontological instantiation.
Both forms occur simultaneously and serve to
precisely locate a model element with the lan-
guage-ontology space.

Linguistic metamodeling
As indicated before, Requirements 1–3 essen-

tially state the need for a language-definition ca-
pability (see Table 1). Much of the recent work
on enhancing the infrastructure, therefore, has
focused on using metamodeling as a language
definition tool. With this emphasis, the linguis-
tic instance-of relationship is viewed as domi-
nant and levels M2 and M3 are regarded as lan-
guage definition layers.

This approach relegates ontological instance-
of relationships, which relate user concepts to
their domain types, to a secondary role. In other
words, whereas linguistic instance-of relation-
ships cross (and form the basis for) linguistic
metalevels, ontological instance-of relationships
don’t cross such levels; they relate entities within
a given level. Figure 2 shows this latest interpre-
tation of the four-layer architecture as embraced
by the new UML 2.0 and MOF 2.0 standards.
Although the latter take a predominantly lin-
guistic view, it’s useful to nevertheless let onto-
logical (intralevel) instantiation establish its own
kind of ontological (vertical) metalevel bound-
aries, as the different shades in level M1 in Fig-
ure 2 indicate.

As well as making the existence of two or-
thogonal metadimensions explicit, Figure 2 il-
lustrates the relationship between model ele-

ments and corresponding real-world elements.
User objects no longer inhabit the M0 level—
instead, the real-world elements that they
model do. (The lightbulb denotes the mental
concept “Collie.”) Note that the real Lassie is
represented by object Lassie; that is, instance-
of is no longer used to characterize the real
Lassie as an instance of Collie. User objects
(that is, model representatives of real-world ob-
jects) now occupy the M1 level, along with the
types they are ontological instances of. (User
data is also considered part of the real world
even though it’s artificial and might even repre-
sent other real-world elements.) Every level
from M1 on is regarded as a model expressed
in the language defined at the level above it.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 3 9

Table 1
Language definition

Concept Purpose UML solution

Abstract syntax The concepts from which models are created (see Requirement 1) Class diagram at level M2
Concrete syntax Concrete rendering of these concepts (see Requirement 2) UML notation, informally specified
Well-formedness Rules for applying the concepts (see Requirement 1) Constraints on the abstract Syntax (using the Object

Constraint Language, for example)
Semantics Description of a model’s meaning (see Requirement 3) Natural language specification

M1

ontological
instance-of

ontological
instance-of

Object

linguistic
instance-of

linguistic
instance-of

linguistic
instance-of

linguistic
instance-of

M0

M2

M3 Class

Class

O1 O0

representsrepresents

instance-of

Collie Lassie

Figure 2. Linguistic
metamodeling view.

Ontological metamodeling
Although linguistic metamodeling addresses

many of the technical requirements, it isn’t suf-
ficient on its own. In particular, Requirement 4
calls for the capability to dynamically extend
the set of domain types available for modeling,
and this in turn requires the capability to define
domain metatypes, or types of types. We refer to
this as ontological metamodeling because it’s
concerned with describing what concepts exist in
a certain domain and what properties they have.

Figure 2 contains an example of ontological
instantiation. The model element Lassie is an
ontological instance of Collie, and thus resides
at a lower ontological level than Collie. This
expresses the fact that in the real world, the men-
tal concept Collie is the logical type of Lassie.

Figure 2 only contains two ontological model
levels, O0 and O1, both contained in linguistic
level M1, but we can naturally extend this di-
mension to give further ontological levels. Fig-
ure 3 features another ontological level, O2,
showing that we can regard Collie as an in-
stance of Breed. An ontological metatype not
only distinguishes one type from another but also
can be used to define metatype properties. For ex-
ample, Breed distinguishes types such as Collie
and Poodle from other types (such as CD and
DVD) and can also be used to define breed prop-
erties, such as where a particular breed originated
or what other breed it was developed from.

Figure 3 also makes another important point
regarding the relationship of the two metadi-

mensions, linguistic and ontological, because
it’s a 90-degree clockwise rotation of Figure 2,
adding level O2. We have also relabeled levels
MO and M1 to LO and L1 to emphasize their
linguistic role. Instead of arranging the linguis-
tic metalevels horizontally so as to suggest that
the traditional infrastructure’s metalevels are
linguistic, Figure 3 arranges the ontological
metalevels horizontally to suggest that the tra-
ditional metalevels are ontological. Both
arrangements are equally valid because the tra-
ditional infrastructure made no distinction be-
tween ontological or linguistic instantiation
and no choice about its metalevels’ meaning.

Not only are both arrangements—or view-
points—equally valid, they are equally useful.
Just as ontological metamodeling is relegated to
a secondary role when we take the linguistic
viewpoint, linguistic metamodeling is relegated
to a secondary role when we take the ontologi-
cal viewpoint. Ideally, an MDD infrastructure
should give equal importance to both ontologi-
cal and linguistic metamodeling; neither should
be subservient to the other. Unfortunately, this
isn’t the case in the new UML 2.0 infrastructure.

UML 2.0 and MOF 2.0 emphasize the linguis-
tic dimension. Levels O0 and O1 exist in M1 but
aren’t explicitly separated by a metalevel boundary.
Ontological metamodeling is not excluded per
se, but the encouraged mechanisms for enabling
it—profiles and stereotypes—have known limi-
tations. While it’s possible to express that Col-
lie is an instance of Breed (see Figure 4), the
full arsenal of M1 modeling concepts isn’t avail-
able for stereotype modeling—for example, a vi-
sual model of associations and generalization re-
lationships between metaconcepts.

However, researchers have long recognized
the ability to freely model with metaconcepts
(that is, fully use an O2 level) as useful. Being
able to use metaconcepts such as TreeSpecies7

or Breed is a big advantage. Figure 5 shows per-
haps one of the most mature, established exam-
ples of ontological metamodeling: the biologi-
cal taxonomy for living beings. Metaconcepts
such as Breed, Species, and so on serve to let
new creature classes be added to the taxonomy.
In a software system, they would facilitate the
dynamic addition of new types at runtime.
Note that you can’t cast Breed, Species, and so
on as supertypes at the O1 level. While it makes
sense to say that Lassie is a Collie, a Dog, and
so on, it doesn’t make sense to say that Lassie is
a Breed, a Species, and so on. Also, it isn’t a

4 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

L1

O1

O0

linguistic
instance-of

linguistic
instance-of

linguistic
instance-of

ontological
instance-of

ontological
instance-of

ontological
instance-of

ontological
instance-of

L0

represents

represents

represents

O2

Collie

Lassie

Breed

Class

Object

Metaclass

Figure 3. Ontological
metamodeling view.

<<Breed>>
Collie

Figure 4. Ontological
metamodeling through
stereotypes.

problem to accommodate level O3 (see Figure
5) in the ontological metadimension, while
stereotypes aren’t designed to support this.

Ontological metamodeling is particularly im-
portant for MDD because it’s explicitly called
for in two of the main strategies for model trans-
formation defined in the MDA User’s Guide.8

First, it’s the basis for the marking mechanism
that’s envisaged as one of the key ways to sup-
port the user-driven definition of model trans-
formation, that is, to support Requirement 6.
Second, it’s the basis for defining mappings in
the framework-based version of type-level trans-
formation. This assumes the existence of an on-
tologically predefined set of superclasses (with
associated predefined mappings) that users spe-
cialize with their own application classes.

W e’ve defined a concrete set of re-
quirements that an ideal MDD in-
frastructure should support. We’ve

also argued that explicitly distinguishing the
two orthogonal forms of metamodeling—lin-
guistic and ontological—is the key to fixing
some of the problems in the first-generation
MDD infrastructure and to scaling it up to
satisfy all the identified requirements.

The forthcoming revision of the OMG’s
MDD infrastructure in the UML 2.0 and MOF
2.0 standards represents a significant step for-
ward in that, for the first time, it accommodates
two distinct forms of instantiation. However,
two significant problems remain.

First, although the distinction is present, it is-
n’t explicit enough. Although the infrastructure
recognizes linguistic metalevel boundaries, onto-
logical boundaries remain implicit. When cou-
pled with the fact that stereotypes remain the
preferred mechanism for user metamodeling, it’s
clear that the new standard is still unduly bal-
anced towards linguistic metamodeling.

Second, in the current profile mechanism,
there’s still a bias toward locating predefined
concepts at the metalevel (that is, as part of
the modeling language) rather than as regular
user types at the M1 level. This is despite the
fact that libraries or frameworks at the M1
level have established a strong track record for
making predefined concepts available for di-
rect use or specialization by users. In fact, the
MDA User’s Guide8 explicitly exploits this
form of reuse and predefinition as a means for
defining reusable type mappings.

Despite this reservation, the new OMG MDD
infrastructure does represent a significant step
forward and provides most of the identified
technical capabilities. We hope that this article
might help improve subsequent versions of the
infrastructure in the future.

References
1. J. Mukerji and J. Miller, eds., “Model Driven Architec-

ture,” www.omg.org/cgi-bin/doc?ormsc/2001-07-01.
2. D.S. Frankel, Model Driven Architecture: Applying

MDA to Enterprise Computing, OMG Press, 2003.
3. OMG Unified Modeling Language Specification, Object

Management Group, 2003, http://doc.omg.org/formal/
03-03-01.

4. Meta Object Facility (MOF) Specification, Object Manage-
ment Group, 2003, http://doc.omg.org/formal/02-04-03.

5. C. Atkinson and T. Kühne, “Rearchitecting the UML
Infrastructure,” ACM Trans. Modeling and Computer
Simulation, vol. 12, no. 4, Oct. 2002, pp. 290–321.

6. J. Bézivin and R. Lemesle, “Ontology-Based Layered Seman-
tics for Precise OA&D Modeling,” Object-Oriented Tech-
nology, LNCS 1,357, Springer-Verlag, 1998, pp. 151–154.

7. J. Odell, “Power Types,” J. Object-Oriented Program-
ming, vol. 7, no. 2, Mar./Apr. 1994, pp. 8–12.

8. XMIVersion 1 Production of XML Schema Specifica-
tion, Object Management Group, 2003, http://doc.omg.
org/formal/03-05-01.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 4 1

Lassie

Biological
rank

O0O1O2O3

Animal

Chordate

Mammal

Carnivore

Canine

Dog

Collie

Kingdom

Phylum

Class

Order

Genus

Species

Breed

Figure 5. Ontological
metamodel of biological
classification.

About the Authors

Colin Atkinson holds the chair of software engineering at the University of Mannheim.
His research interests focus on object and component technology and their use in the system-
atic development of software systems. He received his PhD in computer science from Imperial
College London. Contact him at FG Software Engineering, University of Mannheim, L 15, 16, 5.
OG, Zi. 520, 68161 Mannheim, Germany; atkinson@informatik.uni-mannheim.de.

Thomas Kühne is an assistant professor at the Darmstadt University of Technology. His
research interests focus on object technology, programming language design, component archi-
tectures, and metamodeling. He received his PhD from the Darmstadt University of Technology.
Contact him at FG Metamodeling, TU Darmstadt, Wilhelminenstr. 7, 64283 Darmstadt, Germany;
kuehne@informatik.tu-darmstadt.de.

