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Model transformations are touted to play a key role in Model Driven Developmente.

Although well-established standards for creating metamodels such as the Meta-Object

Facility exist, there is currently no mature foundation for specifying transformations

among models. We propose a framework for the classification of several existing and

proposed model transformation approaches. The classification framework is given as a

feature model that makes explicit the different design choices for model transforma-

tions. Based on our analysis of model transformation approaches, we propose a few

major categories in which most approaches fit.

INTRODUCTION

Model-driven software development is centered on

the use of models.
1

Models are system abstractions

that allow developers and other stakeholders to

effectively address concerns, such as answering a

question about the system or effecting a change.

Examples of model-driven approaches are Model

Driven Architecture** (MDA**),
2,3

Model-Inte-

grated Computing (MIC),
4

and Software Factories.
5

Software Factories, with their focus on automating

product development in a product-line context, can

also be viewed as an instance of generative software

development.
6

Model transformations are touted to play a key role

in Model Driven Development** (MDD**). Their

intended applications include the following:

� Generating lower-level models, and eventually

code, from higher-level models
7

� Mapping and synchronizing among models at the

same level or different levels of abstraction
8

� Creating query-based views of a system
9,10

� Model evolution tasks such as model refactor-

ing
11,12

� Reverse engineering of higher-level models from

lower-level models or code.
13

Considerable interest in model transformations has

been generated by the standardization effort of the

Object Management Group, Inc. (OMG**). In April

2002, the OMG issued a Request for Proposal (RFP)

on Query/Views/Transformations (QVT),
14

which

led to the release of the final adopted QVT

specification in November 2005.
15

Driven by prac-

tical needs and the OMG’s request, a large number

of approaches to model transformation have been

proposed over the last three years. However, as of
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this writing, industrial-strength and mature model-

to-model transformation systems are still not avail-

able, and the area of model transformation contin-

ues to be a subject of intense research. In this paper,

we propose a feature model to compare different

model transformation approaches and offer a survey

and categorization of a number of existing ap-

proaches from four sources:

1. Published in the literature—VIATRA (VIsual

Automated model TRAnsformations) frame-

work,
16,17

Kent Model Transformation lan-

guage,
18,19

Tefkat,
20,21

GReAT (Graph Rewriting

and Transformation language
22

), ATL (Atlas

Transformation Language
23,24

), UMLX,
25

AToM3

(A Tool for Multi-formalism and Meta-Model-

ing
26

), BOTL (Bidirectional Object-oriented

Transformation Language
27,28

), MOLA (MOdel

transformation LAnguage
29

), AGG (Attributed

Graph Grammar system
30

), AMW (Atlas Model-

Weaver
31

), triple-graph grammars,
32

MTL (Model

Transformation Language
33

), YATL (Yet Another

Transformation Language
34

), Kermeta,
35

C-SAW

(Constraint-Specification Aspect Weaver),
36

and

MT Model Transformation Language.
37

2. Described in the final adopted QVT specifica-

tion—The Core, Relations, and Operational lan-

guages.
15

Older QVT submissions are also

mentioned whenever appropriate.

3. Implemented within open-source tools—Andro-

MDA,
38

openArchitectureWare,
39

Fujaba (From

UML** to Java** And Back Again
40

), Jamda

(JAva Model Driven Architecture
41

), JET (Java

Emitter Templates
42

), FUUT-je,
43

and MTF

(Model Transformation Framework
44

), which is a

freely available prototype.

4. Implemented within commercial tools—XMF-Mo-

saic,
45

OptimalJ**,
46

MetaEditþ**,
47,48

ArcSty-

ler,
49

and Codagen Architect.
50

The feature model makes explicit the possible design

choices for a model transformation approach, which

is the main contribution of this paper. We do not

give detailed classification data for each individual

approach mainly because these details are con-

stantly changing. Instead, we give examples of

approaches for each design choice. Furthermore, we

propose a clustering of existing approaches into a

few major categories that capture their main

characteristics and design choices. We conclude

with remarks on the practical applicability of the

different categories.

WHAT IS MODEL TRANSFORMATION?
Transformation is a fundamental theme in computer

science and software engineering. After all, compu-

tation can be viewed as data transformation.

Computing with basic data such as numeric values

and with data structures such as lists and trees is at

the heart of programming. Type systems in pro-

gramming languages help ensure that operations are

applied compatibly to the data. However, when the

subject of a transformation approach is metadata,

i.e., data representing software artifacts such as data

schemas, programs, interfaces, and models, then we

enter the realm of metaprogramming—writing pro-

grams called metaprograms that write or manipulate

other programs. One of the key challenges in this

realm is that metaprograms have to respect the rich

semantics of the metadata upon which they operate.

Similarly, model transformation is a form of

metaprogramming and, thus, must face the same

challenge.

Model transformation is closely related to program

transformation.
51

In fact, their boundaries are not

clear-cut, and both approaches overlap. Their

differences occur in the mindsets and traditions of

their respective transformation communities, the

subjects being transformed, and the sets of require-

ments being considered. Program transformation is

a more mature field with a strong programming

language tradition. On the other hand, model

transformation is a relatively new field, essentially

rooted in software engineering. Consequently, the

transformation approaches found in both fields have

quite different characteristics. While program

transformation systems are typically based on

mathematically oriented concepts such as term

rewriting, attribute grammars, and functional pro-

gramming, model transformation systems usually

adopt an object-oriented approach for representing

and manipulating their subject models.

Because model transformations operate on models,

we need to clarify what models are. A model is an

abstraction of a system or its environment, or both.

In software engineering, the term model is often

used to refer to abstractions above program code,

such as requirements and design specifications.

Some authors in model-driven software develop-

ment consider program code as models too. This

view is consistent with the fact that program code is

an abstraction of the underlying machine code

produced by the compiler. Although being visual is

not a defining characteristic of models, requirements
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and design models are often more visual than

programs. Models are frequently expressed in

focused languages specialized for a particular class

of software applications or a particular aspect of an

application. For example, the Matlab** Simulink**/

Stateflow** environment offers notations special-

ized for modeling control software, whereas inter-

action diagrams in Unified Modeling Language**

(UML**) are focused on representing the interaction

aspect of a wide range of systems. Highly special-

ized modeling languages are increasingly referred to

as domain-specific modeling languages.

In general, model transformations involve models

(in the sense of abstractions above program code) or

models and programs. Because the concept of

models is more general than the concept of program

code, model transformations tend to operate on a

more diverse set of artifacts than program trans-

formations. Model transformation literature consid-

ers a broad range of software development artifacts

as potential transformation subjects. These include

UML models, interface specifications, data schemas,

component descriptors, and program code. The

varied nature of models further invites specialized

transformation approaches that are geared to trans-

forming particular kinds of models. For example, as

explained later in the discussion section, most

model transformation approaches based on graph

transformations are better suited for transforming

UML models than program code. However, there is

no fundamental reason why program transforma-

tion systems could not be applied to the same

artifacts as model transformations. In fact, trans-

formational software development,
52

which in-

volves the automated refinement of high-level

specifications into implementations, is an old and

familiar theme in the area of program transforma-

tion.

In summation, perhaps the most important distinc-

tion between the current approaches to program

transformation and model transformation is that the

latter has been targeted for a particular set of

requirements that include the representation of

models using an object-oriented paradigm, the

traceability among models at different levels of

abstraction, the transformation mapping among

multiple models (i.e., n-way transformations), and

the multidirectionality of transformations. Although

these requirements could also be the subject of

program transformation approaches, they are typi-

cally not considered by program transformation

systems.

EXAMPLES OF MODEL TRANSFORMATIONS

To make our discussion more concrete, we present

two examples of model transformations: one that

maps models to models and another that maps

models to code.

Figure 1 gives an overview of the main concepts

involved in model transformation. The figure shows

the simple scenario of a transformation with one

input (source) model and one output (target) model.

Both models conform to their respective metamod-

els. A metamodel typically defines the abstract

syntax of a modeling notation. A transformation is

defined with respect to the metamodels. The

definition is executed on concrete models by a

transformation engine. In general, a transformation

may have multiple source and target models.

Furthermore, the source and target metamodels may

be the same in some situations.

Sample metamodels and models

Figures 2A and 2B show sample metamodels

expressed as UML class diagrams. Figure 2A gives a

simplified metamodel for class models that includes

the abstract concept of classifiers, which comprises

classes and primitive data types. Packages contain

classes, and classes contain attributes. All model

elements have names, and classes can be marked as

persistent. Figure 2B shows a simple metamodel for

defining relational database schemas for a relational

database management system (RDBMS). A schema

Source Metamodel

Figure 1 
Basic concepts of model transformation

Refers to Refers to

Executes

Reads Writes

Conforms to Conforms to

Source Model

Target Metamodel

Target Model

Transformation Definition

Transformation 
Engine
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contains tables, and tables contain columns. The

column type is represented as a string. Every table

has one primary-key column, which is pointed to by

pkey. Additionally, the concept of foreign keys is

modeled by FKey, which relates foreign-key columns

to tables.

Sample instances of the metamodels using the UML

object diagram notation are shown in Figures 2C

and 2D. The instance in Figure 2C represents a class

model with one package, App, containing two

classes, Customer and Address. Customer is persis-

tent, and Address is not. Figure 2D shows an

instance of the schema metamodel. The instance

represents a schema that can be used to make

Customer objects persistent.

UML-to-schema transformation

As a first example, we consider transforming class

models into schema models described in the

previous section. Such a transformation needs to

realize the following three mappings:

1. Package-to-schema: Every package in the class

model should be mapped to a schema with the

same name as the package.

2. Class-to-table: Every persistent class should be

mapped to a table with the same name as the

class. Furthermore, the table should have a

primary-key column with the type NUMBER and the

name being the class name with _tid appended.

3. Attribute-to-column—The class attributes have to

be appropriately mapped to columns, and some

columns may need to be related to other tables by

foreign key definitions. For simplicity, the attri-

bute mapping is not further considered in this

paper.

The above transformation would map the class

model in Figure 2C to the schema model in Figure

2D. The part of the result in Figure 2D shown in

green (lefthand and middle boxes) is handled by the

first two mappings. The blue part (righthand boxes)

corresponds to the result of the attribute-to-column

mapping.

Transformations expressed in QVT Relations

language

Example 1 shows how this transformation can be

expressed using the QVT Relations language, which

is a declarative language for model-to-model trans-

formations. The language has both a textual and a

graphical representation, but only the textual

representation is shown here. The transformation

1

fkeys cols*

tbls
*

*
*

*

refs

0..1
Table

name : String

B   Simple RDBMS metamodel

Schema

name : String

Column

name : String
type : String

pkey

cols

:Class

name = 'Customer'
isPersistent = true

:Class

name = 'Address'
isPersistent = false

C   UML sample model

:Package

name = 'App'

:Attribute

name = 'addr'

:Attribute

name = 'name'

:Attribute

name = 'addln'

type type

:PrimitiveDataType

name = 'STRING' 

type

pkey

:Table

name = 'Customer'

:Column

name = 'Customer_tid'
type = 'NUMBER'

D   RDBMS sample model

:Schema

name = 'App'

:Column

name = 'addrln'
type = 'STRING'

:Column

name = 'name'
type = 'STRING'

Figure 2 
UML-to-RDBMS example and sample models: (A) Simple
UML metamodel, (B) Simple RDBMS metamodel, 
(C) UML sample model, and (D) RDBMS sample model

Classifier

name : String

*

type

*

1

elems attrs

A   Simple UML metamodel

PrimitiveDataType

Class

isPersistent : Bool

Attribute

name : String

Package

name : String
*

FKey
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declaration specifies two parameters for holding the

models involved in the transformation. The param-

eters are typed over the appropriate metamodels.

The execution direction is not fixed at transforma-

tion definition time, which means that both uml and

rdbms could be source and target models and vice

versa. The user specifies the direction in which the

transformation has to be executed only upon

invoking the transformation.

Example 1

transformation umlRdbms f
uml : SimpleUML, rdbms : SimpleRDBMS) f
key Table (name, schema);

key Column (name, table);

top relation PackageToSchema f
domain uml p:Package fname¼ png
domain rdbms s:Schema fname¼ png

g

top relation ClassToTable f
domain uml c:Class f
package ¼ p:Package fg,
isPersistent ¼ true,
name¼ cn

g
domain rdbms t:Table f
schema ¼ s:Schema fg,
name¼ cn,

cols¼ cl:Column f
name¼cnþ0_tid0,

type¼0NUMBER0g,
pkey¼ cl

g
when f
PackageToSchema (p, s);

g
where f
AttributeToColumn (c, t);

g
g

relation AttributeToColumn f
. . .

g
. . .

g

Each mapping is represented as a relation. A relation

has as many domain declarations as there are

models involved in the transformation. A domain is

bound to a model (e.g., uml) and declares a pattern,

which will be bound with elements from the model

to which the domain is bound. Such patterns consist

of a variable and a type declaration, which itself

may specify some of the properties of that type.

When the transformation is executed, the relations

are verified and, if necessary, enforced by manipu-

lating the target model. If the target model is empty,

its content is freshly created; otherwise, the existing

content is updated.

A relation may specify a condition under which it

applies by using a when clause. The where clause

specifies additional constraints among the involved

elements, which may need to be enforced. The key

definitions are used by the transformation engine to

identify objects that need to be updated during a

transformation execution. There is much more to

say about the execution semantics of QVT Relations,

and the interested reader is invited to explore the

QVT specification document.
15

UML-to-Java transformation

In this example, we consider the generation of Java

code from class models conforming to the meta-

model in Figure 2A. In particular, a Java class with

the appropriate attribute definitions and getters and

setters should be generated for each class in the

class model. Example 2 shows the desired output for

the input model from Figure 2C.

Example 2

public class Customer f
private String name;

private Address addr;

public void setName ( String name ) f
this.name ¼ name;

g

public String getName () f
return this.name;

g

public void setAddr ( String addr ) f
this.addr ¼ addr;

g

public String getAddr () f
return this.addr;

g
g
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The code can conveniently be generated using a

textual template approach, such as the openArchi-

tectureWare template language demonstrated in

Example 3. A template can be thought of as the

target text with holes for variable parts. The holes

contain metacode which is run at template instan-

tiation time to compute the variable parts. The

metacode in Example 3 is underlined. It has facilities

to iterate over the elements of the input model

(FOREACH), access the properties of the elements,

and call other templates (EXPAND).

Example 3

,,DEFINE Root FOR Class..

public class ,,name.. f
,,FOREACH attrs AS a..

private ,,a.type.name.. ,,a.name..;

,,ENDFOREACH..

,,EXPAND AccessorMethods FOREACH attribute..

g
,,ENDDEFINE..

,,DEFINE AccessorMethods FOR Attribute..

public,,type.name..get,,name.toFirstUpper..() f
return this.,,name..;

g
public void set,,name.toFirstUpper..(

,,type.name.. ,,name.. ) f
this.,,name.. ¼,,name..

g
,,ENDDEFINE..

FEATURES OF MODEL TRANSFORMATION

APPROACHES

This section presents the results of applying domain

analysis to existing model transformation ap-

proaches. Domain analysis is concerned with

analyzing and modeling the variabilities and com-

monalities of systems or concepts in a given

domain.
53

We document our results using feature

diagrams.
54,55

Essentially, a feature diagram is a

hierarchy of common and variable features charac-

terizing the set of instances of a concept. In our case,

the features provide a terminology and representa-

tion of the design choices for model transformation

approaches. We do not aim for this terminology to

be normative. Unfortunately, the relatively new area

of model transformation has many overloaded

terms, and many of the terms we use in our

terminology are often used with different meanings

in the original descriptions of the different ap-

proaches. Consequently, we provide the definitions

of the terms as we use them. Furthermore, we

expect the terminology to evolve as our under-

standing of model transformation matures. Our

main goal is to show the vast range of available

choices as represented by the current approaches.

Figure 3 shows the top-level feature diagram, where

each subnode represents a major point of variation.

The fragment of the cardinality-based feature

modeling notation
56,57

used in this paper is further

explained in Table 1. Note that our feature diagrams

treat model-to-model and model-to-text approaches

uniformly. We will distinguish between these

categories later in the ‘‘Major Categories’’ section.

The description of the top-level features in Figure 3

follows.

� Specification—Some transformation approaches

provide a dedicated specification mechanism,

such as preconditions and postconditions ex-

pressed in Object Constraint Language (OCL).
58

A

particular transformation specification may rep-

resent a function between source and target

Figure 3 
Top-level feature diagram

Specification Incremen-
tality

Direction-
ality

TracingTransform-
ation Rules

Rule
Organization

Source-Target
Relationship

Rule
Application
Control

SchedulingLocation
Determinaton

Model Transformation
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models and be executable; however, in general,

specifications describe relations and are not

executable. The QVT-Partners
59

submission dis-

tinguished between relations as potentially non-

executable specifications of transformations and

their executable implementations. The QVT spec-

ification
15

still keeps this distinction, although the

Relations language is now meant to be used

primarily for expressing executable transforma-

tions.
� Transformation rules—In this paper, transforma-

tion rules are understood as a broad term

describing the smallest units of transformation.

Rewrite rules with a lefthand side (LHS) and a

righthand side (RHS) are obvious examples of

transformation rules; however, we also consider a

function or a procedure implementing some

transformation step as a transformation rule. In

fact, the boundary between rules and functions is

not so clear-cut; for example, function definitions

in modern functional languages such as Haskell

resemble rules with patterns on the left and

expressions on the right. Templates can be

considered as a degenerate form of rules, as

discussed later in the ‘‘Template-Based Ap-

proaches’’ section.
� Rule application control—This has two aspects:

location determination and scheduling. Location

determination is the strategy for determining the

model locations to which transformation rules are

applied. Scheduling determines the order in which

transformation rules are executed. Although con-

trol mechanisms usually address both aspects at

the same time, for presentation purposes, we

discuss them separately.
� Rule organization—This comprises general struc-

turing issues, such as modularization and reuse

mechanisms.
� Source-target relationship—This is concerned with

issues such as whether source and target are one

and the same model or two different models.
� Incrementality—This refers to the ability to update

existing target models based on changes in the

source models.
� Directionality—This describes whether a trans-

formation can be executed in only one direction

(unidirectional transformation) or multiple direc-

tions (multidirectional transformation).
� Tracing—This is concerned with the mechanisms

for recording different aspects of transformation

execution, such as creating and maintaining trace

links between source and target model elements.

Each of the following subsections elaborates on one

major area of variation represented as a reference in

Figure 3 by giving its feature diagram, describing the

different choices, and providing examples of ap-

proaches supporting a given feature. The diagrams

remain at a certain level of detail to fit the available

space; however, each feature could be further

analyzed uncovering additional subfeatures. Also,

the feature groups in the presented diagrams usually

express typical rather than all possible feature

combinations. For example, different language

paradigms (see Figure 5B later) are organized into

an xor-group rather than an or-group (Table 1).

Hybrid approaches may always provide any combi-

nations of these features, which would correspond

to an or-group.

Transformation rules

The features of transformation rules are given in

Figure 4A. Their descriptions follow.

Domains

A domain is the part of a rule responsible for

accessing one of the models on which the rule

operates. Rules usually have a source and a target

domain, but they may also involve more than two

domains. Transformations involving n domains are

sometimes referred to as n-way transformations.

Examples are model merging or model weaving,
31

which are transformations with more than one input

domain. In general, a set of domains can also be

seen as one large composite domain; however, it is

[n..m]

Symbol

F

F

F

F

F

Table 1  Symbols used in cardinality-based feature 
modeling

Explanation

Solitary feature with cardinality 
[1..1], i.e., mandatory feature

Solitary feature with cardinality 
[0..1], i.e., optional feature

Solitary feature with cardinality 
[n..m], n   0   m   n   m>1, 
i.e., mandatory clonable feature

Grouped feature
  

Reference to feature model F

xor-group

or-group

>_ >_> >
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useful to distinguish among individual domains

when writing transformations.

Domains can have different forms. In QVT Rela-

tions, a domain is a distinguished typed variable

with an associated pattern that can be matched in a

model of a given model type (Example 1). In a

rewrite rule, each side of the rule represents a

domain. In an implementation of a rule as an

imperative procedure, a domain corresponds to a

parameter and the code that navigates or creates

model elements by using the parameter as an entry

point. Furthermore, a rule may combine domains of

different forms. For example, the source domain of

the templates in Example 3 is captured by the

metacode, whereas the target domain has the form

of string patterns.

The features of a domain are shown in Figure 4B

and described in the following subsections:

Domain languages. A domain has an associated

domain language specification that describes the

possible structures of the models for that domain. In

the context of MDA, that specification has the form

of a metamodel expressed in the Meta Object Facility

(MOF**).
60

Transformations with source and target

domains conforming to a single metamodel are

referred to as endogenous or rephrasings, whereas

transformations with different source and target

metamodels are referred to as exogenous or

translations.
61,62

Static modes. Similar to the parameters of a proce-

dure, domains have explicitly declared or implicitly

assumed static modes, such as in, out, or in/out.

Classical unidirectional rewrite rules with an LHS

and RHS can be thought of as having an in-domain

(source) and an out-domain (target), or a single in/

out-domain for in-place transformations. Multidi-

rectional rules, such as in MTF, assume all domains

to be in/out.

Dynamic mode restriction. Some approaches allow

dynamic mode restriction—restricting the static

modes at execution time. For example, MTF allows

marking any of the participating in/out-domains as

read-only, that is, restricting them to in for a

particular execution of a transformation. Essentially,

such restrictions define the execution direction.

Body. There are three subcategories under Body,

variables, patterns, and logic:

� Variables may hold elements from the source and/

or target models (or some intermediate elements).

They are sometimes referred to as metavariables

to distinguish them from variables that may be

part of the models being transformed (e.g., Java

variables in transformed Java programs).
� Patterns are model fragments with zero or more

variables. Sometimes, such as in the case of

templates, patterns can have not only variables

embedded in their body, but also expressions and

statements of the metalanguage. Depending on the

Figure 4 
Features of transformation rules: (A) rules and (B) domains

Domain
Language

Static
Mode

Body

Domain

[1..*]

Syntactic
Separation

Multidirection-
ality

Application
Conditions

Intermediate
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Parameterization Reflection Aspects

Transformation Rules

Domain

A

B
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Variables Patterns Logic
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CZARNECKI AND HELSEN IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006628



internal representation of the models being trans-

formed, we can have string, term, or graph

patterns (Figure 5A). String patterns are used in

textual templates, as discussed later in the

‘‘Template-Based Approaches’’ section. Model-to-

model transformations usually apply term or

graph patterns. Patterns can be represented using

the abstract or concrete syntax of the corre-

sponding source or target model language, and the

syntax can be textual or graphical.
� Logic expresses computations and constraints on

model elements (Figure 5B). Logic may follow

different programming paradigms such as object-

oriented or functional and be nonexecutable or

executable. Nonexecutable logic is used to specify

relationships among models. Executable logic can

take a declarative or imperative form. Examples of

the declarative form include OCL queries to

retrieve elements from the source model and the

implicit creation of target elements through con-

straints, as in the QVT Relations and Core

languages. Imperative logic often has the form of

program code calling repository application pro-

gramming interfaces (APIs) to manipulate models

directly. For instance, the Java Metadata Interface

(JMI)
63

provides a Java API to access models in a

MOF repository. Imperative code uses imperative

assignment, whereas declarative approaches may

bind values to variables, as in functional pro-

gramming, or specify values through constraints.

Typing. The typing of variables, logic, and patterns

can be untyped, syntactically typed, or semantically

typed (Figure 6). Textual templates are examples of

untyped patterns (see the ‘‘Template-Based Ap-

proaches’’ section). In the case of syntactic typing, a

variable is associated with a metamodel element

whose instances it can hold. Semantic typing allows

stronger properties to be asserted, such as well-

formedness rules (static semantics) and behavioral

properties (dynamic semantics). A type system for a

transformation language could statically ensure for a

transformation that the models produced by the

transformation will satisfy a certain set of syntactic

and semantic properties, provided the input models

satisfy some syntactic and semantic properties.

Syntactic separation

Some approaches offer syntactic separation (see

Figure 4A). They clearly separate the parts of a rule

A

B

Textual Graphical

Patterns

Structure

Strings Terms Graphs

Syntax

Abstract Concrete

Figure 5 
Features of the body of a domain: (A) patterns and (B) logic
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operating on one model from the parts operating on

other models. For example, classical rewrite rules

have an LHS operating on the source model and an

RHS operating on the target model. In other

approaches, such as a rule implemented as a Java

program, there might not be any such syntactic

distinction.

Multidirectionality

Multidirectionality refers to the ability to execute a

rule in different directions (see Figure 4A). Rules

supporting multidirectionality are usually defined

over in/out-domains. Multidirectional rules are

available in MTF and QVT Relations.

Application condition

Transformation rules in some approaches may have

an application condition (see Figure 4A) that must

be true in order for the rule to be executed. An

example is the when-clause in QVT Relations

(Example 1).

Intermediate structure

The execution of a rule may require the creation of

some additional intermediate structures (see Figure

4A) which are not part of the models being trans-

formed. These structures are often temporary and

require their own metamodel. A particular example

of intermediate structures are traceability links. In

contrast to other intermediate structures, trace-

ability links are usually persisted. Even if trace-

ability links are not persisted, some approaches,

such as AGG and VIATRA, rely on them to prevent

multiple ‘‘firings’’ of a rule for the same input

element.

Parameterization

The simplest kind of parameterization is the use of

control parameters that allow passing values as

control flags (Figure 7). Control parameters are

useful for implementing policies. For example, a

transformation from class models to relational

schemas could have a control parameter specifying

which of the alternative patterns of object-relational

mapping should be used in a given execution.
7

Generics allow passing data types, including model

element types, as parameters. Generics can help

make transformation rules more reusable. Generic

transformations have been described by Varró and

Pataricza.
17

Finally, higher-order rules take other

rules as parameters and may provide even higher

levels of reuse and abstraction. Stratego
64

is an

example of a term rewriting language for program

transformation supporting higher-order rules. We

are currently not aware of any model transformation

approaches with a first class support for higher-

order rules.

Reflection and aspects

Some authors advocate the support for reflection

and aspects (Figure 4) in transformation languages.

Reflection is supported in ATL by allowing reflective

access to transformation rules during the execution

of transformations. An aspect-oriented extension of

MTL was proposed by Silaghi et al.
65

Reflection and

aspects can be used to express concerns that

crosscut several rules, such as custom traceability

management policies.
66

Rule application control: Location determination

A rule needs to be applied to a specific location

within its source scope. As there may be more than

one match for a rule within a given source scope, we

need a strategy for determining the application

locations (Figure 8A). The strategy could be

deterministic, nondeterministic, or interactive. For

example, a deterministic strategy could exploit some

standard traversal strategy (such as depth first) over

the containment hierarchy in the source. Stratego
64

is an example of a term rewriting language with a

rich mechanism for expressing traversal in tree

structures. Examples of nondeterministic strategies

include one-point application, where a rule is

applied to one nondeterministically selected loca-

tion, and concurrent application, where one rule is

Figure 6 
Typing

Untyped Syntactically Typed Semantically Typed

Typing

Figure 7 
Parameterization

Control Parameters Generics Higher-Order Rules

Parameterization
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Figure 8
Model transformation approach features: (A) location determination, (B) rule scheduling, (C) rule organization, 
(D) source-target relationship, (E) incrementality, (F) directionality, and (G) tracing 
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applied concurrently to all matching locations in the

source. Concurrent application is supported in

AToM3, AGG, and VIATRA. AGG offers critical pair

analysis to verify for a set of rules that there will be

no rules competing for the same source location.

Some tools, such as AToM3, allow the user to

determine the location for rule application inter-

actively.

The target location for a rule is usually determin-

istic. In an approach with separate source and target

models, traceability links can be used to determine

the target: A rule may follow the traceability link to

a target element that was created by another rule

and use the element as its own target. In the case of

in-place update, the source location becomes the

target location, although traceability links can also

be used (as later illustrated in Figure 10).

Rule application control: Rule scheduling

Scheduling mechanisms determine the order in

which individual rules are applied. Scheduling

mechanisms can vary in four main areas

(Figure 8B).

1. Form—The scheduling aspect can be expressed

implicitly or explicitly. Implicit scheduling implies

that the user has no explicit control over the

scheduling algorithm defined by the tool, as in

BOTL. The only way a user can influence the

system-defined scheduling algorithm is by de-

signing the patterns and logic of the rules to

ensure certain execution orders. For example, a

given rule could check for some information that

only some other rule would produce. Explicit

scheduling has dedicated constructs to explicitly

control the execution order. Explicit scheduling

can be internal or external. In external schedul-

ing, there is a clear separation between the rules

and the scheduling logic. For example, VIATRA

offers rule scheduling by an external finite state

machine. In contrast, internal scheduling is a

mechanism allowing a transformation rule to

directly invoke other rules, as in ATL or the code

template shown in Example 3.

2. Rule selection—Rules can be selected by an

explicit condition, as in MOLA. Some ap-

proaches, such as BOTL, offer a nondeterministic

choice. Alternatively, a conflict resolution mech-

anism based on priorities can be provided.

Interactive rule selection is also possible. Both

priorities and interactive selection are supported

in AToM3.

3. Rule iteration—Rule iteration mechanisms in-

clude recursion, looping, and fixpoint iteration

(i.e., repeated application until no changes are

detected). For example, ATL supports recursion,

MOLA has a looping construct, and VIATRA

supports fixpoint iteration.

4. Phasing—The transformation process may be

organized into several phases, with each phase

having a specific purpose, and only certain rules

can be invoked in a given phase. For example,

structure-oriented approaches, such as OptimalJ

and the QVT submission by Interactive Objects

and partners,
67

have a separate phase to create

the containment hierarchy of the target model

and a separate phase to set the attributes and

references in the target (see the ‘‘Structure-driven

approaches’’ section).

Rule organization
Rule organization is concerned with composing and

structuring multiple transformation rules. We con-

sider three areas of variation in this context

(Figure 8C):

1. Modularity mechanisms—Some approaches (e.g.,

QVT, ATL, MTL, and VIATRA) allow packaging

rules into modules. A module can import another

module to access its content.

2. Reuse mechanisms—Reuse mechanisms offer a

way to define a rule based on one or more other

rules. In general, scheduling mechanisms, such

as calling one rule from another, can be used to

define composite transformation rules. However,

some approaches offer dedicated reuse mecha-

nisms, such as inheritance between rules (e.g.,

rule inheritance,
68

derivation,
67

extension,
69

and

specialization
59

), inheritance between modules

(e.g., unit inheritance
68

), and logical composi-

tion.
59

3. Organizational structure—Rules may be orga-

nized according to the structure of the source

language (as in attribute grammars, where

actions are attached to the elements of the source

language) or the target language, or they may

have their own independent organization. An

example of the organization according to the

structure of the target is the QVT submission by

Interactive Objects and partners.
67

In this ap-

proach, there is one rule for each target element

type and the rules are nested according to the
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containment hierarchy in the target metamodel.

For example, if the target language has a package

construct in which classes can be nested, the rule

for creating packages will contain the rule for

creating classes (which will contain rules for

creating attributes and methods).

Source-target relationship

Some approaches, such as ATL, mandate the

creation of a new target model that has to be

separate from the source (Figure 8D). However, in-

place transformation can be simulated in ATL

through an automatic copy mechanism. In some

other approaches, such as VIATRA and AGG, source

and target are always the same model; that is, they

only support in-place update. Yet other approaches,

for example, QVT Relations and MTF, allow creating

a new model or updating an existing one. QVT

Relations also support in-place update. Further-

more, an approach could allow a destructive update

of the existing target or an update by extension only,

that is, where existing model elements cannot be

removed. Approaches using nondeterministic selec-

tion and fixpoint iteration scheduling (see ‘‘Rule

Scheduling’’ section earlier) may restrict in-place

update to extension in order to ensure termination.

Alternatively, transformation rules may be orga-

nized into an expansion phase followed by a

contraction phase, which is often done in graph

transformation systems such as AGG.

Incrementality

Incrementality involves three different features

(Figure 8E):

1. Target incrementality—The basic feature of all

incremental transformations is target-incremen-

tality, that is, the ability to update existing target

models based on changes in the source models.

This basic feature is also referred to as change

propagation in the QVT final adopted specifica-

tion.
15

Obviously, target incrementality corre-

sponds to the feature update in Figure 8D, but it

is now seen from the change-propagation per-

spective. A target-incremental transformation

creates the target models if they are missing on

the first execution. A subsequent execution with

the same source models as in the previous

execution has to detect that the needed target

elements already exist. This detection can be

achieved, for example, by using traceability links.

When any of the source models are modified and

the transformation is executed again, the neces-

sary changes to the target are determined and

applied. At the same time, the target elements

that can be preserved are preserved.

2. Source incrementality—Source incrementality is

about minimizing the amount of source that

needs to be reexamined by a transformation

when the source is changed. Source incremen-

tality corresponds to incremental compilation: A

change impact analysis determines the total set of

source modules that need to be recompiled based

on the list of source modules that were changed.

Source incrementality is useful for working with

large source models.

3. Preservation of user edits in the target—Practical

scenarios in the context of model synchronization

require the ability to rerun a transformation on an

existing user-modified target to resynchronize the

target with a changed source while preserving the

user edits in the target. The dimensions of model

synchronization, such as the degree of preserva-

tion of user-provided input in the target models,

the degree of automation, and the frequency of

triggering, are discussed elsewhere.
57

Directionality

Transformations may be unidirectional or multi-

directional (Figure 8F). Unidirectional transforma-

tions can be executed in one direction only, in which

case a target model is computed (or updated) based

on a source model. Multidirectional transformations

can be executed in multiple directions, which is

particularly useful in the context of model synchro-

nization. Multidirectional transformations can be

achieved using multidirectional rules or by defining

several separate complementary unidirectional

rules, one for each direction.

Transformation rules usually have a functional

character: Given some input in the source model,

they produce a concrete result in the target model. A

declarative rule (i.e., one that only uses declarative

logic or patterns) can often be applied in the inverse

direction, too. However, as different inputs may lead

to the same output, the inverse of a rule may not be

a function. In this case, the inversion could

enumerate a number of possible solutions (this

could theoretically be infinite), or just establish a

part of the result in a concrete way (because the part

is the same for all solutions) and use variables,

defaults, or values already present in the result for

the rest of it. The invertibility of a transformation

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 CZARNECKI AND HELSEN 633



depends not only on the invertibility of the trans-

formation rules, but also on the invertibility of the

scheduling logic. In general, inverting a set of rules

may fail to produce any result due to nontermina-

tion.

Tracing
Tracing can be understood as the runtime footprint

of transformation execution (Figure 8G). Trace-

ability links are a common form of trace information

in model transformation, connecting source and

target elements, which are essentially instances of

the mapping between the source and target do-

mains. Traceability links can be established by

recoding the transformation rule and the source

elements that were involved in creating a given

target element. Trace information can be useful in

performing impact analysis (i.e., analyzing how

changing one model would affect other related

models), determining the target of a transformation

as in model synchronization, model-based debug-

ging (i.e., mapping the stepwise execution of an

implementation back to its high-level model), and in

debugging model transformations themselves.

Some approaches, such as QVT, ATL, and Tefkat,

provide dedicated support for tracing. Even without

dedicated support, as in the case of AGG, VIATRA

and GReAT, tracing information can always be

created just as any other target elements. Some

approaches with dedicated support, Tefkat for

example, require developers to manually encode the

creation of traceability links in the transformation

rules, while other approaches, such as QVT and

ATL, create traceability links automatically. In the

case of automated support, the approach may still

provide some control over what gets recorded. In

general, we might want to control (1) the kind of

information recorded (e.g., the links between source

and target elements, the rules that created them, and

a time stamp for the creation), (2) the abstraction

level of the recorded information (e.g., links for top-

level transformations only), and (3) the scope for

which the information is recorded (e.g., tracing for

particular rules or parts of the source only). Finally,

there is the choice of location where the links are

stored (e.g., in the source or target, or separately).

MAJOR CATEGORIES
At the top level, we distinguish between model-to-

text and model-to-model transformation approaches.

The distinction between the two categories is that,

while a model-to-model transformation creates its

target as an instance of the target metamodel, the

target of a model-to-text transformation is just

strings. For completeness, we mention the concept

of text-to-model transformation, but it essentially

comprises parsing and reverse-engineering technol-

ogies, which are beyond the scope of this paper.

Model-to-text transformation corresponds to the

concept of ‘‘pretty printing’’ in program transfor-

mation. Model-to-text approaches are useful for

generating both code and noncode artifacts such as

documents. In general, we can view transforming

models to code as a special case of model-to-model

transformations; we only need to provide a meta-

model for the target programming language. How-

ever, for practical reasons of reusing existing

compiler technology and for simplicity, code is often

generated simply as text, which is then fed into a

compiler. OMG issued an RFP for a MOF 2.0 Model-

to-Text Transformation Language in April 2004,
70

which will eventually lead to a standard for mapping

MOF-based models to text.

Model-to-text approaches

In the model-to-text category, we distinguish be-

tween visitor-based and template-based approaches.

Visitor-based approach

A very basic code-generation approach consists in

providing some visitor mechanism to traverse the

internal representation of a model and write text to a

text stream. An example of this approach is Jamda—

an object-oriented framework providing a set of

classes to represent UML models, an API for

manipulating models, and a visitor mechanism

(CodeWriters) to generate code. Jamda does not

support the MOF standard to define new meta-

models; however, new model element types can be

introduced by subclassing the existing Java classes

that represent the predefined model element types.

Template-based approach

The majority of currently available MDA tools

support template-based model-to-text generation

(e.g., openArchitectureWare, JET, FUUT-je, Coda-

gen Architect, AndroMDA, ArcStyler, MetaEditþ,

and OptimalJ). AndroMDA reuses existing open-

source template-based generation technology: Ve-

locity
71

and XDoclet.
72

An example of the template-

based approach is shown in Example 3.

A template usually consists of the target text

containing splices of metacode to access information
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from the source and to perform code selection and

iterative expansion. (For an introduction to tem-

plate-based code generation, see Cleaveland.
73

)

According to our terminology, the LHS uses ex-

ecutable logic to access source, and the RHS

combines untyped string patterns with executable

logic for code selection and iterative expansion.

Furthermore, there is no clear syntactic separation

between the LHS and RHS. Template approaches

usually offer user-defined scheduling in the internal

form of calling a template from within another

template.

The LHS logic accessing the source model may have

different forms. The logic could be simply Java code

accessing the API provided by the internal repre-

sentation of the source model such as JMI, or it

could be declarative queries, for example, in OCL or

XPath.
74

The openArchitectureWare Generator

Framework propagates the idea of separating more

complex source access logic—which might need to

navigate and gather information from different

places of the source model—from templates by

moving the logic into user-defined operations of the

source-model elements.

Compared with a visitor-based transformation, the

structure of a template resembles more closely the

code to be generated. Templates lend themselves to

iterative development as they can be easily derived

from examples. Because the template approaches

discussed in this section operate on text, the patterns

they contain are untyped and can represent syntac-

tically or semantically incorrect code fragments. On

the other hand, textual templates are independent of

the target language and simplify the generation of

any textual artifacts, including documentation.

A related technology is frame processing, which

extends templates with more sophisticated adapta-

tion and structuring mechanisms (Bassett’s

frames,
75

XVCL,
76

XFramer,
77

ANGIE
**78

). To our

knowledge, XFramer and ANGIE have been applied

to generate code from models.

Model-to-model approaches
In the model-to-model category, we distinguish

among direct-manipulation, structure-driven, op-

erational, template-based, relational, graph-trans-

formation-based, and hybrid approaches.

Direct manipulation approach

This category of approach offers an internal model

representation and some APIs to manipulate it, such

as JMI. It is usually implemented as an object-

oriented framework, which may also provide some

minimal infrastructure to organize the transforma-

tions (e.g., abstract class for transformations).

However, users usually have to implement trans-

formation rules, scheduling, tracing, and other

facilities, mostly from the beginning, in a program-

ming language such as Java.

Structure-driven approach

Approaches in this category have two distinct

phases: The first phase is concerned with creating

the hierarchical structure of the target model;

whereas, the second phase sets the attributes and

references in the target. The overall framework

determines the scheduling and application strategy;

users are only concerned with providing the trans-

formation rules.

An example of the structure-driven approach is the

model-to-model transformation framework provided

by OptimalJ. The framework is implemented in Java

and provides incremental copiers that users have to

subclass to define their own transformation rules.

The basic metaphor is the idea of copying model

elements from the source to the target, which can

then be adapted to achieve the desired transforma-

tion effect. The framework uses reflection to provide

a declarative interface. A transformation rule is

implemented as a method with an input parameter

whose type determines the source type of the rule,

and the method returns a Java object representing

the class of the target model element. Rules are not

allowed to have side effects, and scheduling is

completely determined by the framework.

Another structure-driven approach is the QVT

submission by Interactive Objects and Project

Technology.
67

A special property of this approach is

the target-oriented rule organization, where there is

one rule per target element type and the nesting of

the rules corresponds to the containment hierarchy

in the target metamodel. The execution of this

model can be viewed as a top-down configuration of

the target model.

Operational approach

Approaches that are similar to direct manipulation

but offer more dedicated support for model trans-

formation are grouped in this category. A typical

solution in this category is to extend the utilized

metamodeling formalism with facilities for express-

ing computations. An example would be to extend a
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query language such as OCL with imperative

constructs. The combination of MOF with such

extended executable OCL becomes a fully-fledged

object-oriented programming system. Examples of

systems in this category are QVT Operational

mappings, XMF-Mosaic’s executable MOF, MTL,

C-SAW, and Kermeta. Specialized facilities such as

tracing may be offered through dedicated libraries.

Example 4 shows our sample transformation from

class models to schemas expressed in the QVT

Operational language. In contrast to the QVT

Relations solution from Example 1, the transforma-

tion declaration specifies the parameter modes; that

is, the transformation is executed only in one

direction from uml to rdbms. The entry point for the

execution is the function main(), which invokes the

packageToSchema mapping on all packages and then

the attributeToColumn mapping on all attributes

contained in the input model uml. The mappings are

defined by using an imperative extension of OCL. A

mapping is defined as an operation on a model

element. For example, packageToSchema is an

operation of Package with Schema as its return type.

The body of the mapping populates the properties of

the return object, while self refers to the object on

which the mapping was invoked. QVT Operations is

a quite feature-rich language. The interested reader

is invited to explore the QVT specification

document.
15

Example 4

transformation umlRdbms(

in uml : SimpleUML,

out rdbms : SimpleRDBMS

);

main() f
uml.objectsOfType(Package)-.mappackageToSchema();

uml.objectsOfType(Attribute)-.map attributeToColumn();

g

mapping Package::packageToSchema () : Schema f
--population section for the schema

name :¼ self.name;
tbls :¼ self.elems-.map classToTable();

g

mapping Class::classToTable () : Table

when f self.isPersistent¼true; g f

name :¼ self.name;
key :¼ object Column f

name :¼ self.name þ 0_tid0;

type :¼ 0NUMBER0;

g;
cols :¼ key;

g
mapping Attributes::attributeToColumn () : Column f

. . .

g

. . .

Template-based approach

Model templates are models with embedded meta-

code that compute the variable parts of the resulting

template instances. Model templates are usually

expressed in the concrete syntax of the target

language, which helps the developer to predict the

result of template instantiation. The metacode can

have the form of annotations on model elements.

Typical annotations are conditions, iterations, and

expressions, all being part of the metalanguage. An

obvious choice for the expression language to be

used in the metalanguage is OCL.

A concrete model-template approach is given by

Czarnecki and Antkiewicz.
79

In that approach, a

template of a UML model, such as a class or activity

diagram, is created by annotating model elements

with conditions or expressions represented as

stereotypes. A very simple example is shown in

Figure 9, which reuses the class model from Figure

2C. This time, however, the model is shown in its

UML concrete syntax. The class Address and the

addr attribute of Customer are annotated with the

presence condition addrFeature. When the tem-

plate is instantiated with addrFeature being true,

the resulting model is the same as the template. If

the condition is false, the annotated elements, which

are blue in the figure, are removed.

Relational approach

This category groups declarative approaches in

which the main concept is mathematical relations.

In general, relational approaches can be seen as a

form of constraint solving. Examples of relational

approaches are QVT Relations, MTF, Kent Model

Transformation Language, Tefkat, AMW, and map-

pings in XMF-Mosaic.

The basic idea is to specify the relations among

source and target element types using constraints. In
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its pure form, such a specification is nonexecutable

(e.g., relations
18,59

and mapping rules
68

). However,

declarative constraints can be given executable

semantics, such as in logic programming. In fact,

logic programming with its unification-based

matching, search, and backtracking seems a natural

choice to implement the relational approach, where

predicates can be used to describe the relations.

Gerber et al.
20

explore the application of logic

programming, in particular Mercury, a typed dialect

of Prolog, and F-logic, an object-oriented logic

paradigm, to implement transformations. An exam-

ple of the relational approach is shown in

Example 1.

All of the relational approaches are side-effect-free

and, in contrast to the imperative direct manipu-

lation approaches, create target elements implicitly.

Relational approaches can naturally support multi-

directional rules. They sometimes also provide

backtracking. Most relational approaches require

strict separation between source and target models;

that is, they do not allow in-place update.

Graph-transformation-based approach

This category of model transformation approaches

draws on the theoretical work on graph trans-

formations. In particular, this category operates on

typed, attributed, labeled graphs,
80

which can be

thought of as formal representations of simplified

class models. Examples include AGG, AToM3,

VIATRA, GReAT, UMLX, BOTL, MOLA, and Fujaba.

Graph transformation rules have an LHS and an RHS

graph pattern. The LHS pattern is matched in the

model being transformed and replaced by the RHS

pattern in place. The LHS often contains conditions

in addition to the LHS pattern, for example, negative

conditions. Some additional logic, for example, in

string and numeric domains, is needed to compute

target attribute values such as element names.

GReAT offers an extended form of patterns with

multiplicities on edges and nodes.

Graph patterns can be rendered in the concrete

syntax of their respective source or target language

(e.g., in VIATRA) or in the MOF abstract syntax

(e.g., in BOTL and AGG). The advantage of the

concrete syntax is that it is more familiar to

developers working with a given modeling language

than the abstract syntax. Also, for complex lan-

guages like UML, patterns in a concrete syntax tend

to be much more concise than patterns in the

corresponding abstract syntax (compare Figures 3C

and 9 and also see the work by Marschall and

Braun
28

for examples). On the other hand, it is easy

to provide a default rendering for abstract syntax

that will work for any metamodel, which is useful

when no specialized concrete syntax is available.

AGG and AToM3 are systems directly implementing

the theoretical approach to attributed graphs and

transformations on such graphs. They have built-in

fixpoint scheduling with nondeterministic rule

selection and concurrent application to all matching

locations, and they rely on implicit scheduling by

the user. The transformation rules are unidirectional

and in-place.

Figure 10 illustrates how the transformation from

class models to schemas can be expressed in AGG.

Only two rules are shown. The rule in Figure 10A

maps packages to schemas. The mapping from

classes to tables is given in Figure 10B. The mapping

of attributes to columns is not shown. The RHS of an

AGG rule contains a mixture of the new elements

and elements from the LHS, as indicated by the

indexes prefixing their names. When the LHS is

matched, new elements are created. The implicit

scheduling is achieved through correspondence

objects connecting source and target elements

(which are an example of intermediate structures)

and negative conditions. For example, the package-

to-schema rule matches packages and creates the

corresponding schemas and the package-to-schema

correspondence objects (i.e., instances of P2S). Each

rule has a negative application condition, which is

implicitly assumed to be its RHS. Because of the

negative application condition, no additional sche-

ma objects will be created for a package that is

already connected to a schema by a P2S object.

Figure 9 
Example of a model template

App

<<addrFeature>>
Address

{isPersistent=false}

addln: String

Customer
{isPersistent=true}

name: String
<<addrFeature>>addr: Address
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Systems such as VIATRA, GReAT, MOLA, and

Fujaba extend the basic functionality of AGG and

AToM3 by adding explicit scheduling. For example,

VIATRA users can build state machines to schedule

transformation rules. The explicit representation of

scheduling in GReAT is a data-flow graph. MOLA

and Fujaba use control-flow graphs for that purpose.

The class-model-to-schema transformation ex-

pressed in MOLA is shown in Figure 11. Each

enclosing rectangular box represents a looping

construct. Boxes with rounded corners represent

looping conditions. The elements to be matched are

drawn using solid lines; dashed lines are used for

the elements to be created. The top condition

matches package objects. When a package object is

matched, the corresponding schema is created and

the body of the loop, which is another loop, is

executed. The latter loop iterates over all classes in

the package that was matched in the current

iteration of the outer loop and creates the corre-

sponding classes and primary-key columns. The

final step is a call to ProcessClassAttributes,

which is a subprogram mapping attributes to

columns.

Relational-style, multidirectional approaches based

on graph transformations are also possible. For

example, Königs
32

discusses using a transformation

approach based on triple-graph grammars to simu-

late QVT Relations.

Hybrid approach

Hybrid approaches combine different techniques

from the previous categories. The different ap-

proaches can be combined as separate components

or, in a more fine-grained fashion, at the level of

individual rules. QVT is an example of a hybrid

approach with three separate components, namely

Relations, Operational mappings, and Core. Exam-

ples of the fine-grained combination are ATL and

YATL.

A transformation rule in ATL may be fully declar-

ative, hybrid, or fully imperative. The LHS of a fully

declarative rule (so-called source pattern) consists of

a set of syntactically typed variables with an

optional OCL constraint as a filter or navigation

logic. The RHS of a fully declarative rule (so-called

target pattern) contains a set of variables and some

declarative logic to bind the values of the attributes

in the target elements. In a hybrid rule, the source or

target patterns are complemented with a block of

imperative logic, which is run after the application

of the target pattern. A fully imperative rule (so-

called procedure) has a name, a set of formal

parameters, and an imperative block, but no

patterns. Rules are unidirectional and support rule

inheritance.

Other approaches

Two more approaches are mentioned for complete-

ness: transformation implemented using Extensible

Stylesheet Language Transformation (XSLT
81

) and

Figure 10 
Graph transformation in AGG: (A) package-to-schema rule and  (B) class-to-table rule

cols pkey

A

tarsrc

1:Class

name = cn
isPersistent = true

4:Schema3:P2S

B

tarsrc

1:Class

name = cn
isPersistent = true

4:Schema

tarsrc
Table

name = cn

Column

name = cn+'_tid'
type ='NUMBER'

3:P2S

C2T

2:Package 2:Package

1:Package

name = pn

1:Package

name = pn

Schema

name = pn

src

tar

P2S
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the application of metaprogramming to model

transformation.

Because models can be serialized as Extensible

Markup Language (XML) using the XML Metadata

Interchange (XMI**),
82

implementing model trans-

formations using XSLT, which is a standard tech-

nology for transforming XML, seems very attractive.

Such an approach can be classified as term rewriting

using a functional language. Unfortunately, the use

of XMI and XSLT has scalability limitations. Manual

implementation of model transformations in XSLT

quickly leads to non-maintainable implementations

because of the verbosity and poor readability of XMI

and XSLT. A solution is to generate the XSLT rules

from some more declarative rule descriptions, as

demonstrated in the work by Peltier et al.
83,84

;

however, even this approach suffers from poor

efficiency because of the copying required by the

pass-by-value semantics of XSLT and the poor

compactness of XMI.

A more promising direction in applying traditional

metaprogramming techniques to model transforma-

tions has been proposed by Tratt.
37

His solution is a

domain-specific language for model transformations

embedded in a metaprogramming language.

DISCUSSION

In this section, we comment on the practical

applicability of the different types of model trans-

formation. These comments are based on our

intuition and the application examples published

together with the approaches. Because of the lack of

controlled experiments and extensive practical

experience, these comments are not fully validated,

but we hope that they will stimulate discussion and

further evaluation.

Direct manipulation is obviously the most low-level

approach. In its basic form, it offers the user little or

no support or guidance in implementing trans-

formations. Essentially, all work has to be done by

the user. The approach can be improved by adding

Figure 11 
Graph transformation in MOLA

ProcessClassAttributes( )

#packageToSchemap:Package s:Schema

name := @p.name

pkey

cols

#packageToSchema
@p:Package @s:Schema

#classToTablec:Class

{isPersistent = true}

t:Table

name = @c.name

cl:Column

name := @c.name+'_tid'
type ='NUMBER'
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specialized libraries and frameworks implementing

facilities such as pattern matching and tracing.

Operational approaches are similar to direct ones

except that they offer an executable metamodeling

formalism through a dedicated language. Providing

specialized facilities through libraries and frame-

works seems to be an attractive way to improve the

support for model transformations in an evolu-

tionary way.

The structure-driven category covers pragmatic

approaches that were developed in the context of

(and seem to apply particularly well to) certain

kinds of applications such as generating Enterprise

JavaBeans** (EJB**) implementations and database

schemas from UML models. These applications

require strong support for transforming models with

a 1-to-1 and 1-to-n (and sometimes n-to-1) corre-

spondence between source and target elements.

Also, in this application context, there is typically no

need for iteration (and in particular fixpointing) in

scheduling, which can be system-defined. It is

unclear how well these approaches can support

other kinds of applications.

Template-based approaches make it easy for the

developer to predict the resulting code or models

just by looking at the templates. They also support

iterative development in which the developer can

start with a sample model or code and turn it into a

template. Current template-based approaches do not

have built-in support for tracing, although trace

information can be easily encoded in the templates.

Templates are particularly useful in code generation

and model compilation scenarios.

Relational approaches seem to strike a good balance

between flexibility and declarative expression. They

can provide multidirectionality and incrementality,

including the update of a manually modified target.

On the other hand, their power is contingent on the

sophistication of the underlying constraint-solving

facilities. As a result, performance strongly depends

on the kinds of constraints that need to be solved,

which may limit their applicability. In any case,

relational approaches seem to be most applicable to

model synchronization scenarios.

Graph-transformation-based approaches are in-

spired by theoretical work in graph transformations.

In their pure form, graph transformations are

declarative and also seem intuitive; however, the

usual fixpoint scheduling with concurrent applica-

tion makes them rather difficult to use due to the

possible lack of confluence and termination. Exist-

ing theories for detecting such problems are not

general enough to cover the wide range of trans-

formations found in practice. As a result, tools such

as GReAT, VIATRA, and MOLA provide mecha-

nisms for explicit scheduling. It is often argued that

graph transformations are a natural choice for

model transformations because models are graphs.

As Batory points out,
85

there are plenty of examples

of graph structures in practice, including the objects

in a Java program whose processing is usually not

understood as graph transformations. In our opin-

ion, a particular weakness of existing graph trans-

formation theories and tools is that they do not

consider ordered graphs, that is, graphs with

ordered edges. As a consequence, they are appli-

cable to models that contain predominantly un-

ordered collections, such as class diagrams with

classes having unordered collections of attributes

and methods. However, they do not apply well to

method bodies, where ordering is important, such as

in a list of statements. Ordering can be represented

by additional edges, but this approach leads to more

complex transformations. It is interesting to note

that ordering is well handled by classical program

transformation, which uses term rewriting on

abstract syntax trees (ASTs). Terms and ASTs are

ordered trees, and the order of child nodes is used to

encode lists of program elements such as state-

ments. Edge ordering can be modeled in graph

transformations by using edge attributes to attach an

index to each edge; however, current tools based on

graph transformation do not exploit this information

for more efficient pattern matching. Nevertheless,

graph transformation theory might turn out to be

useful for ensuring correctness in some application

scenarios. Fujaba is probably the largest and most

significant example of applying graph transforma-

tions to models to date. It remains to be seen what

impact these approaches will have on systems used

in practice.

Hybrid approaches allow the user to mix and match

different concepts and paradigms depending on the

application. Given the wide range of practical

scenarios, a comprehensive approach is likely to be

hybrid. A point in case is the QVT specification,

which also offers a hybrid solution.

RELATED WORK

The feature model and categorization presented in

this paper is based on our earlier paper.
86

The
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previous feature model has been widely discussed in

workshops and in personal communications. It has

also been used by other authors. For example,

Jouault and Kurtev
24

give a classification of ATL and

AMW using the earlier version of the model.

The current feature model and categories take into

account the feedback that we have received based

on the original paper. They were also revised to

cover approaches that were proposed after 2003,

most prominently, the final adopted QVT specifica-

tion. Introducing domains into transformation rules

was one of the most important changes to the

feature model based on that specification. Only five

out of the 14 presented feature diagrams remained

unchanged compared with the original model,

namely, those in Figures 5A, 6, and 8A–8C. We also

added two new categories of model-to-model ap-

proaches, namely, operational and template-based

approaches.

In their review of the different QVT submissions,

Gardner et al.
87

propose a unified terminology to

enable a comparison of the different proposals. As

their scope of comparison is considerably different

from ours, there is not much overlap in terminology.

While Gardner et al. focus on the eight initial QVT

submissions, we discuss a wider range of ap-

proaches: In addition to the revised QVT submis-

sions, we also discuss other approaches published in

the literature and available in tools. Another differ-

ence is that Gardner et al. discuss model queries,

views, and transformations, whereas we focus on

transformations in more detail. The terms defined

by Gardner et al. that are also relevant for our

classification are model transformation, unidirec-

tional, bidirectional, declarative, imperative, and

rules.

In addition to providing the basic unifying termi-

nology, Gardner et al. discuss practical requirements

on model transformations such as requirements

scalability, simplicity, and ease of adoption. Among

others, they discuss the need to handle trans-

formation scenarios of different complexities, such

as transformations with different origin relation-

ships between source and target model elements, for

example, 1-to-1, 1-to-n, n-to-1, and n-to-m. Finally,

they make some recommendations for the final QVT

standard. In particular, they recommend a hybrid

approach, supporting declarative specification of

simpler transformations, but allowing for an im-

perative implementation of more complex ones.

Another account of requirements for model trans-

formation approaches is given by Sendall and

Kozaczynski.
88

Mens and Van Gorp
60

have also proposed a

classification of model transformations, which they

apply to graph transformation systems.
89

That work

has been significantly influenced by our earlier

classification. The main difference is that their

classification is broader as it also covers different

aspects of model transformation tools such as

usability, extensibility, interoperability, and stan-

dards. In contrast, our feature model offers a more

detailed treatment of model transformation ap-

proaches. Another difference is that Mens and Van

Gorp present a flat list of dimensions, whereas our

dimensions are organized hierarchically. An exten-

sive comparison of graph transformation ap-

proaches using a common example is given by

Taentzer et al.
90

CONCLUSIONS

Model transformation is a relatively young area.

Although it is related to and builds upon the more

established fields of program transformation and

metaprogramming, the use of graphical modeling

languages and the application of object-oriented

metamodeling to language definitions set a new

context.

In this paper, we presented a feature model offering

a terminology for describing model transformation

approaches and making the different design choices

for such approaches explicit. We also surveyed and

classified existing approaches into visitor-based and

template-based model-to-text categories and direct-

manipulation, structure-driven, operational, tem-

plate-based, relational, graph-transformation-based,

and hybrid model-to-model categories.

Although there are satisfactory solutions for trans-

forming models to text (such as template-based

approaches), this is not the case for transforming

models to models. Many new approaches to model-

to-model transformation have been proposed over

the last three years, but relatively little experience is

available to assess their effectiveness in practical

applications. In this respect, we are still at the stage

of exploring possibilities and eliciting requirements.

Modeling tools available on the market are just

starting to offer some model-to-model transforma-

tion capabilities, but these are still very limited and
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often ad hoc, that is, without proper theoretical

foundation.

Evaluation of the different design options for a

model transformation approach will require more

experiments and practical experience.
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Siméon, Editors,W3C Candidate Recommendation (No-
vember 3, 2005), http://www.w3.org/TR/xpath20/.

75. P. G. Bassett, Framing Software Reuse: Lessons from the
Real World, Prentice-Hall, Inc., Upper Saddle River, NJ
(1997).

76. S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang, ‘‘XVCL:
XML-Based Variant Configuration Language,’’ Proceed-
ings of the International Conference on Software Engi-
neering, Portland, OR (2003), pp. 810–811.

77. M. Emrich, Generative Programming Using Frame Tech-
nology, Diploma thesis, University of Applied Sciences,
Department of Computer Science and Micro-System
Engineering, Kaiserslautern, Germany (2003).

78. Frame Processor ANGIE, Delta Software Technology,
http://www.d-s-t-g.com/neu/media/pdf/facts_e/
DLT21474.pdf.

79. K. Czarnecki and M. Antkiewicz, ‘‘Mapping Features to
Models: A Template Approach Based on Superimposed

Variants,’’ Proceedings of the 4th International Conference
on Generative Programming and Component Engineering,
Tallinn, Estonia (2005), pp. 422–437.

80. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J.
Kreowski, S. Kuske, D. Plump, A. Schürr, and G.
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