
Capturing and Using Software Architecture Knowledge for Architecture-Based

Software Development

Muhammad Ali Babar, Ian Gorton, and Ross Jeffery

Empirical Software Engineering

National ICT Australia Ltd. and University of New South Wales, Australia
{malibaba, ian.gorton, ross.jeffery} @nicta.com.au

Abstract

Management of architecture knowledge is vital for

improving an organization’s architectural capabilities.

Despite the recognition of the importance of capturing

and reusing architecture knowledge, there is no suitable

support mechanism. We have developed a conceptual

framework to provide appropriate guidance and tool

support for making tacit or informally described

architecture knowledge explicit. This framework

identifies different approaches to capturing implicit

architecture knowledge. We discuss different usages of

the captured knowledge to improve the effectiveness of

architecture processes. This paper also presents a

prototype of a web-based architecture knowledge

management tool to support the storage and retrieval of

the captured knowledge. The paper concludes with open

issues that we plan to address in order to successfully

transfer this support mechanism for capturing and using

architecture knowledge to the industry.

Keywords: Software architecture, software quality,

knowledge management, software reuse, process

improvement, experience factory

1. Introduction

Software Architecture (SA) design and evaluation

involves complex and knowledge intensive tasks [1, 2].

The complexity lies in the fact that tradeoffs need to be

made to satisfy current and future requirements of a

potentially large set of stakeholders, who may have

competing vested interests in architectural decisions [3,

4]. The knowledge required to make suitable

architectural choices is broad, complex, and evolving,

and can be beyond the capabilities of any single

architect.

Due to the recognition of the importance and far

reaching influence of the architectural decisions, several

approaches (such as Architecture Tradeoff Analysis

Method (ATAM) [5], 4+1 views [6], Rationale Unified

Process (RUP) [7] and architecture-based development

[8]) have been developed to support architecting

processes. While these approaches help manage

complexity by using systematic approaches to reason

about various design decisions, they provide very little

guidance or support to capture and maintain the details

on which design decisions are based, along with

explanations of the use of certain types of design

constructs (such as patterns, styles, tactics and so on).

Such information represents architecture knowledge,

which can be valuable throughout the software

development lifecycle [9, 10].

Lack of a systematic approach to capture and use

architecture knowledge may preclude organizations

from growing their architecture capability and reusing

architectural assets. Moreover, the knowledge

concerning the domain analysis, architectural patterns

used, design alternatives evaluated and design decisions

made is implicitly embedded in the architecture and/or

becomes tacit knowledge of the architect [2, 9, 11].

Apart from the architectural artifacts created during

architecting activities, there are several other sources of

architecture knowledge. These include architecture

styles and patterns [12-14], design patterns [15],

architecture and design tactics [13, 16]. While these

sources are aimed at explicitly codifying different types

of architecture knowledge, some vital pieces of

knowledge are either omitted or informally described.

For instance, many pattern documentation formats do

not explicitly describe the “forces1” of a pattern. We

have also found that each pattern’s documentation

informally describes the schemas of synergistic

relationships among patterns, quality attributes and

scenarios as a pattern’s description include the scenarios

that characterize the quality attributes supported or

blocked by that pattern. This information can be

captured as reusable artifacts in a format that provides

architectural knowledge at a level of abstraction

appropriate for the architecture design phase [17, 18].

Our research is aimed at improving the quality of

architecting process. This is achieved by developing

effective knowledge management (KM) structures to

facilitate the management of implicit architecture

knowledge generated during architecting process or

informally described in sources such as [13-16]. We

have been developing a support mechanism to facilitate

the capture and use of architecture knowledge by using

concepts from KM [19, 20], experience factories [21,

22], and pattern-mining [17, 23] paradigms.

1

The forces of a pattern describe the factors which can cause a

problem if they interfere with one another. A pattern attempts to

resolve clashes among those factors. Discussion of forces also

captures tradeoffs in a pattern.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

 This paper presents a conceptual framework for

capturing implicit architecture knowledge as reusable

artifacts and managing it with a knowledge repository.

This makes such knowledge readily available to

improve architecture-based software development

process. The framework identifies various approaches to

capture implicit and explicit design and process

knowledge during architecting process, along with an

approach to distil and document architecture knowledge

from patterns. The novelty of the approach resides in its

ability to incorporate all the components into an

integrated approach, which has been incrementally

implemented in a web-based tool.

The reminder of this paper is organized as follows. In

Section 2 we describe the theoretical background and

motivation that stimulated the research. Section 3

presents a conceptual framework for capturing

architecture knowledge. Section 4 describes usages of

the captured knowledge. A brief description of a

prototype tool is given in Section 5 and Section 6

concludes the paper.

2. Theoretical Background and Motivation
2.1 Architecture-Based Development

Software architecture embodies some of the earliest

design decisions, which are hard and expensive to

change if found flawed during downstream development

activities. Since the quality attributes (such as

maintainability and reliability) of complex software

systems largely depend on the overall SA [13], a

systematic and integrated approach is required to

address architectural issues throughout the software

development lifecycle; such approach is called

architecture-based development [8]. Figure 1 shows a

high level process model of architecture-based

development that consists of six steps, each having

several activities and tasks. Later in the paper, we

briefly describe what type of knowledge can be captured

or used by each step.

 Architectural requirements are those requirements

that have broad cross-functional implications. Such

requirements are usually elicited and specified using

quality sensitive scenarios [13]. Architecture design is

an iterative process, making incremental decisions to

satisfy functional and architectural requirements. These

decisions provide criteria to reason about the resulting

architecture – this is called architecture analysis.

 Architecture is documented in terms of views, each

view addressing a different perspective of the

architecture. Architecture design, documentation and

analysis are iterative steps in the process [8]. Having

designed and analyzed a suitable architecture, it is

realized to create the system, and the architecture is

maintained to ensure that the detailed design and

implementation decision conform to the original

architectural decisions and rationales.

Figure 1: Architecture-Based Development Process

model [8]

2.2 KM Problems in Architecting Processes

The architecture process aims to solve a mix of ill-

and well-defined problems, which involve processing a

significant amount of knowledge. Architects require

topic knowledge (learned from text books and courses)

and episodic knowledge (experience with the

knowledge) [1]. One of the main problems in the

architecture is the lack of access to knowledge

underpinning the design processes and decisions [9, 24].

This type of knowledge involves things like the impact

of certain middleware choices on communication

mechanisms between different tiers, why an API is used

instead of a wrapper, and who to contact to discuss the

performance of different architectural choices.

Much of this knowledge is episodic and usually not

documented [2]. The absence of a disciplined approach

to capture and maintain architecture knowledge has

many downstream consequences. These include:

the evolution of the system becomes complex and

cumbersome, resulting in violation of the

fundamental design decisions

inability to identify design errors

inadequate clarification of arguments and

information sharing about the design artifacts and

process,

All these cause loss of substantial knowledge

generated during the architecture process, thus depriving

organizations of a valuable resource, loss of key

personnel may mean loss of knowledge [2, 25, 26].

The SA community has developed several methods

(such as ATAM [5], PASA [27]) to support a

disciplined approach to architectural practices. Some of

these do emphasize the need for knowledge

management to improve reusability and grow

organizational capabilities in the architecture domain.

Except for [28], there is no approach that explicitly

states what type of knowledge needs to be managed and

how, when, where, or by whom. Also, none of the

current approaches provides any conceptual framework

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

to design, develop and maintain an appropriate

repository of architecture knowledge. Hence we posit

that the lack of suitable techniques, tools, and guidance

is why knowledge about design decisions is not

captured and managed.

The software engineering community has been

discovering and documenting architecture knowledge

accumulated by experienced researchers and

practitioners in the forms of patterns [14, 15]. However,

we have found that the amount of information provided

and the level of abstraction used may not be appropriate

for the architecture stage – too much detail is counter-

productive as expert designers usually follow breadth-

first approach [1]. Moreover, we have found that the

existing formats of pattern documentation are not

appropriate for explicating the schemas of the

relationships among scenario, quality attributes, and

patterns in a way that makes this knowledge readily

reusable. This results in little use/reuse of the

architectural artifacts (such as scenarios, quality

attributes and tactics) informally described in patterns’

documentation [17, 18].

Like any other activity of software development, KM

in architecting processes also suffers from other

problems such as lack of motivation, resources,

lackluster sponsorship by the management and others

[29, 30]. However, these issues are not within the main

focus of this paper.

2.3 Knowledge Management Building Blocks

The major objective of Knowledge Management

(KM) is to improve business processes and practices by

utilizing individual and organizational knowledge

resources. These include skills, capabilities, experiences,

routines, cultural norms, and technologies [19].

Software engineering processes need or generate both

explicit and implicit knowledge. These are mutually

complementary entities that interact with each other in

various creative activities [31].

Figure 2: Building blocks of knowledge management

(Modified for SA knowledge from [19]).

KM does not ignore the value or need to address

other software development aspects, such as process and

technology, nor does it seek to replace them. Instead, it

works toward software process improvement by

explicitly and systematically addressing the management

of knowledge. This includes its acquisition, structuring,

storage and effective maintenance [20]. There are two

main strategies to manage knowledge:

1. codification: making tacit knowledge explicit

2. personalization: supporting knowledge sharing by

describing who knows what.

Successful organizations apply both codification and

personalization strategies: one of them in a primary and

the other in a secondary role [32].

We posit that architecture knowledge management is

a management task, which can be described using the

knowledge management task model presented in [20].

This model (Figure 2) consists of two strategic and six

operational knowledge management tasks, called the

building blocks of KM. Each of the building blocks

represents a particular task of managing knowledge and

underpin an iterative model that presents an integrated

approach to KM and ignoring one or more of the

building blocks can interrupt the knowledge cycle [19].

For example, if contextual information about designing

an artifact in a particular way is not preserved, it may

disappear from organizational or individual memory,

making reusability of that artifact difficult.

2.4 Experience Factory Organization

The Experience Factory Organization (EFO) provides

a conceptual framework for building a systematic

approach to accumulate and reuse domain specific

knowledge [22]. The main objective of the EFO

approach to improve the performance (in terms of cost,

quality, and schedule) of software development projects

by leveraging experience from previous projects [21].

The EFO framework takes into account the reality that

accumulating and maintaining knowledge and

experiences of software development are non-trivial

tasks, which should not be left to individual projects.

This is because it is difficult for a project team to devote

resources to capture their experiences for reuse while

deadlines are looming or quality and productivity have

top priority.

The EFO addresses this issue by dividing the

responsibilities of software development and experience

accumulation into two organizational units:

1. Project Organization: uses packaged experience to

deliver software products

2. the Experience Factory: supports software

development by providing tailored experience [22].

Unlike the EFO, our approach treats the experience

factory as a tool, called the Architecture Knowledge

Repository (AKR), instead of a separate organizational

unit. However, the AKR also has been divided into

project knowledge (concrete) and corporate knowledge

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

(generic). Another requirement of reusability is an

appropriate structure to enable tailoring and generalizing

knowledge. We have addressed this issue by designing a

set of templates to capture and represent both types

(concrete and generic) of architecture knowledge [17].

3. Capturing Architecture Knowledge

This section presents a conceptual framework for

capturing implicit knowledge. This framework provides

a support mechanism to design, develop and populate a

knowledge repository to improve architecture-based

software development. The framework comprises

planning, capturing, organization and evaluation, and

storage of architecture knowledge (Figure 3).

Figure 3: A conceptual framework for capturing

architecture knowledge

The planning phase is aimed at understanding the

knowledge of the domain, identifying the sources of the

knowledge, and deciding about the techniques to be

used. The main objective of knowledge capture phase is

to acquire knowledge from human or secondary sources

using the techniques described in section 3.1 and 3.2.

The knowledge captured in this phase needs to be

organized and evaluated (the objective of phase 3)

before being placed in the AKR as a reusable artifact.

There are different techniques (such as transcription,

coding, summarization [33]) to organize knowledge

depending on the knowledge capture source and

methods. For example, we have developed different

templates to organize knowledge extracted from patterns

[18]. The organized knowledge is validated before being

stored in knowledge repository. The cycle between

phase 2-4 runs until most of the required implicit

knowledge from the people or secondary sources has

been extracted, organized and stored

3.1 Capturing knowledge from Human sources

One of the main sources of implicit architecture

knowledge is people (e.g. architects, domain experts and

project teams), who individually and collectively carry a

large amount of “know-how” and “community specific

folklore” about their domain and projects [2]. There are

two main strategies to capture such implicit knowledge

to populate a knowledge repository: 1) appoint a

knowledge engineer to capture implicit knowledge from

individuals or teams [2, 34] or 2) provide appropriate

tool support so that knowledge can be encoded into the

system as part of the knowledge creation process. The

latter is called contextualized knowledge acquisition

[35]. This strategy is similar to Electronic Process Guide

(EPG) [36]. It is not the intent of this paper to

recommend a particular strategy as each of them have

been found useful in different contexts.

Table 1: Some Knowledge Acquisition Techniques

When applying the first strategy of knowledge

acquisition, someone can use a variety of techniques

derived from different disciplines such as expert

systems, artificial intelligence, groupware systems and

others. Table 1 presents some of the techniques that are

useful to capture implicit knowledge. A succinct

explanation of these techniques is provided in [37].

 To implement the second strategy, a suitable

environment is provided so that knowledge can be

encode it is created [35]. We have developed a KM

repository as a support mechanism for this strategy.

However, an empty knowledge repository cannot

motivate people to use it. Before exposing the potential

users to a knowledge repository, it should be populated

[38]. This can be done by capturing knowledge from

experts using the above-mentioned techniques or from

secondary sources such as patterns using the “pattern-

mining” approach to populate the AKR.

3.2 Capturing knowledge from patterns

We have found that software patterns are a valuable

source of architecturally significant constructs (such as

scenarios and tactics) and relationships between them.

These synergistic relationships should be captured and

documented as reusable architecture knowledge to

support and improve architecting activities [17, 18]. To

facilitate the task of knowledge acquisition from

patterns, we have developed:

a process model to capture and structure

architecture knowledge from patterns

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

a set of guidelines to identify and capture the

architectural information that can be captured as a

reusable artifact from a pattern

a set of templates to structure and document the

extracted architecture knowledge

In the following, we describe the steps of the pattern-

mining process (Figure 4).

The process consists of the following steps:

1. Select a software pattern to be explored for

architectural information. This decision is usually

influenced by a system’s domain and the software

engineer’s experience.

2. Understand the pattern documentation format to

identify the variations that exist among different

patterns’ description styles.

3. Explore different parts of the selected patterns to

identify architectural information described in a

pattern’s documentation

4. Capture each type of information separately

5. Structure and document the extracted information

using the provided template

6. Validate and refine documented information based

on domain knowledge and experience of using

different patterns.

Patterns are usually documented in a variation of the

format used in [14, 15]. This requires the inclusion of

problem, solution, and quality consequences parts. We

have found that scenarios are mostly found in the

problem and solution sections. Forces of a pattern may

be described separately but usually forces can also be

found in the problem and solution sections. The quality

attributes are described in the quality consequence

section, usually at the end of a pattern’s description.

The extracted information must also be structured

and documented in a format that creates a readily

useable knowledge artifact. We have designed a set of

templates to document different units of architecturally

significant information (i.e. general scenarios, quality

attributes, tactics, usage examples and so on) as an

artifact of architecture knowledge.

Figure 4: A process model of mining patterns for

architecture knowledge from patterns

Table 2 presents one of these templates. The template

presents different pieces of a pattern’s description in a

succinct format at an abstraction level suitable for SA

design and evaluation stages, where abstract scenarios

are used to characterize required quality attributes and

suitable patterns are chosen based on their support for

the required quality attributes. This template contains

the knowledge extracted from Business Delegate J2EE

pattern by following the pattern-mining process.

Table 2: Abstract architecture knowledge extracted from J2EE Business Delegate pattern

Pattern Name: Business Delegate Pattern Type: Design pattern

Brief description This pattern reduces coupling between tiers by providing an entry point for accessing the

services another tier. It also supports results caching to improve performance…

Context A client may be exposed to the complexity of dealing with the distributed components…

Problem description Presentation-tier components interact directly with business services. Such a direct interaction

makes the clients vulnerable to any changes in the business services…

Suggested solution Reduce coupling between presentation-tier clients and business services. The Business

Delegate hides the underlying implementation details of the business service...

Forces Presentation-tier clients require access to business service.

It is desirable to minimize coupling to hide implementation details from clients.

Available tactics Delegate Proxy and Delegate Adapter

Positively Negatively Affected Attributes

Reduce coupling, manageability. performance Introduce new layer, increased complexity

S1 Presentation-tier components shall not be exposed to the implementation details of the business

services they use.

S2 System shall provide a caching mechanism to improve response to business service request.

General

scenarios

S3 Changes in the business services implementation shall not require corresponding changes in

their clients residing in other tier.

Usage examples E-commerce portals, online content providers, sports websites.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

The template makes the relationships among scenarios,

quality attributes, and patterns explicit. Moreover, it also

captures one of the most important parts of a pattern

description, namely the forces. The forces of a pattern

are usually described implicitly in most of the pattern

documentation styles. Recently, there are some efforts to

pay more attention to the forces of a pattern [39, 40].

The abstract knowledge captured in template 1 can be

concretized for a specific project. For example, general

scenarios extracted from patterns are concretized to

specify quality attributes. It also increases confidence in

an architecture’s capability of satisfying certain concrete

scenarios if they are instances of a general scenarios

extracted from a pattern used in that architecture [17].

4. Using Architecture Knowledge

In this section, we describe a few ways of using the

architectural knowledge captured and organized using

the techniques described in section 3 and stored in the

AKR. The generic architectural knowledge captured

from patterns, experts, past project or other sources can

be reused in new project by instantiating general

scenarios, architectural decisions, and modifying

patterns according the context of a project. Project-

specific knowledge is used not only to support various

architecture activities, but also can be transformed into

reusable artifacts. For instance, general scenarios stored

in the repository can be used to instigate thinking while

eliciting quality requirements (Figure 1) or these

scenarios can be used to generate concrete scenarios.

During the design stage, generic knowledge should

help architects to identify suitable patterns by comparing

the scenarios and quality attributes supported by

different patterns with the ones required by the

stakeholders. Moreover, architects can also evaluate the

suitability of generic architecture decisions suggested

for a particular context and they can contact the

contributor of a particular architecture decision for

further explanation. SA evaluation activities can also be

improved by using both generic and project-specific

knowledge. Generic knowledge helps improve the

scenario development task, select suitable reasoning

frameworks and increase confidence in the capabilities

of architecture to satisfy particular quality sensitive

scenarios as a result of using certain patterns [18, 23].

Project-specific knowledge helps designers,

developers and maintainers to better understand the

architectural decisions, their constraints and reasoning

behind it. Moreover, the availability of the reasoning

behind the architectural decisions helps architects to

explain architectural choices and how they satisfy

business goals [11]. Such knowledge is also valuable

during the architecture realization and maintenance

stages (Figure 1) of architecture-based development

processes. We have designed an empirical research

program to assess different uses of the knowledge

captured from pattern and preliminary results are very

encouraging [17].

5. PAKME - A Prototype of Architecture

Knowledge Management System

The Process-based Architecture Knowledge

Management Environment (PAKME) is a prototype

web-based system to provide knowledge management

support for improving architecting activities. The

PAKME has been built on top of an open source

groupware platform, Hipergate [41]. This provides

various collaborative features including contact

management, project management, online collaboration

tools and others. We have modified the data model of

the Hipergate to add the features required to capture,

manage, and retrieve architecture knowledge; the AKR

database currently consists of 25 tables.

 The knowledge repository is logically divided into

knowledge-based artifacts, generic knowledge, and

project-based artifacts. The generic knowledge is

accumulated by using the implicit knowledge capture

techniques described in this paper. So far we have

populated the ARK by distilling architecture knowledge

from several J2EE [42] patterns, architecture patterns

[14], and the BCS case study described in [13]. Project-

based architecture knowledge consists of the artifacts

either instantiated from generic knowledge or newly

created during various architecture activities.

 Figure 5: A form for entering a new pattern in the AKR

Currently, the PAKME consists of four components;

knowledge acquisition, knowledge maintenance,

knowledge retrieval, and knowledge presentation. The

knowledge acquisition component provides various

forms and editing tools to enter new generic or project-

specific knowledge in the repository. The forms are

based on the templates (e.g. Table 2) developed to

organize knowledge. Figure 5 shows a form for entering

a new pattern in the AKR. While entering a new artifact,

an end user can view the existing artifacts in the

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

background as shown in Figure 5. For example, if a

user’s search fails to retrieve a particular pattern, the

user may decide to enter that pattern in the repository.

The knowledge maintenance component provides

various features to modify, delete and instantiate

different architectural artifacts. It also includes

repository administration functions.

The retrieval component supports both basic and

advanced searches to find and retrieve the desired pieces

of knowledge. Moreover, a user can traverse to different

related artifacts by navigating through the knowledge

space based on the initial search results (Figure 6).

Figure 6: Various screens showing the results of search

and navigation based retrieval provided by the AKR.

The knowledge presentation component supports

generating different views of the architecture knowledge

residing in the AKR. For example, it presents utility

(Figure 7) trees and result trees based on the results of

architecture evaluation sessions using ATAM [13]. To

summarize, the two main objectives of the PAKME are:

To provide a support mechanism for knowledge

capture, manage, and retrieval to improve the

quality of architecting activities.

To act as a knowledge source for those who need

rapid access to experience-based design decisions

to assist in making new decisions or discovering the

rationale for past decisions.

6. Conclusion and Future work

Our research is aimed at improving the effectiveness

of SA processes by providing suitable support

mechanisms. Current approaches are deficient in

providing the required design knowledge or managing

the knowledge generated. This leads to a lack of use of

existing SA knowledge as it is not available in a readily

usable format at an appropriate level of abstraction.

Moreover, implicit knowledge is not normally captured

to make it available for decision support.

Figure 7: A utility tree of concrete scenarios.

This paper emphasizes the importance of capturing

and using implicit SA design knowledge to improve

architecture activities. We present a framework for

capturing implicit knowledge using various knowledge

acquisition and pattern-mining techniques and

structuring and storing that knowledge in a knowledge

repository developed to support the framework.

Future work includes enhancement of the tool with

case-based approaches [35] and incremental refinement

of search queries based on the results of the basic

search. We are particularly keen to test the pattern-

mining process and tool in industrial settings, so that

their applicability and scalability can be thoroughly

assessed. The preliminary results of our assessment of

the pattern-mining process and the usefulness of the

extracted knowledge are very encouraging [17]. These

give us confidence in the utility of our approach.

Acknowledgement – Several undergraduate

students helped us build the tool. National ICT Australia

is funded through the Australian Government's Backing

Australia's Ability initiative, in part through the

Australian Research Council.

7. References

[1] Robillard, P.N., "The role of knolwedge in software

development," Communications of the ACM, 1991. 42(1): pp.

87-92.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

[2] Terveen, L.G., et al., "Living Design Memory: Framework,

Implementation, Lessons Learned," Human-Computer

Interaction, 1995. 10(1): pp. 1-37.

[3] Gorton, I. and J. Haack, "Architecting in the Face of

Uncertainty: An Experience Report," Proc. International

Conference on Software Engineering. 2004.

[4] Al-Naeem, T., et al., "A Quality-Driven Systematic

Approach for Architecting Distributed Software Applications,"

Accepted in 27th Int'l. Conf. of Software Eng. 2005.

[5] Clements, P., et al., "Evaluating Software Architectures:

Methods and Case Studies". Addison-Wesley, 2002.

[6] Kruchten, P.B., "The 4+1 View Model of architecture,"

Software, IEEE, 1995. 12(6): pp. 42-50.

[7] Kruchten, P., "The Rational Unified Process: An

Introduction", 2nd ed. Addison-Wesley, 2000.

[8] Bass, L. and R. Kazman, "Architecture-Based

Development," Tech. Report CMU/SEI-99-TR-007, SEI,

Carnegie Mellon University, Pittsburgh, 1999

[9] Bosch, J., "Software Architecture: The Next Step,"

European Workshop on Software Architecture. 2004.

[10] Dutoit, A.H. and B. Paech, "Rationale Management in

Software Engineering", in Handbook of Software Engineering

and Knowledge Engineering, S.K. Chang, Editor. World

Scientific Publishing, 2001, Singapore.

[11] Tyree, J. and A. Akerman, "Architecture Decisions:

Demystifying Architecture," IEEE Software, 2005. 22(2): pp.

19-27.

[12] Shaw, M. and D. Garlan, "Software Architecture:

Perspectives on an Emerging Discipline". Prentice Hall, Upper

Saddle River, NJ, 1996.

[13] Bass, L., et al., "Software Architecture in Practice", 2 ed.

Addison-Wesley, 2003.

[14] Buschmann, F., et al., "Pattern-Oriented Software

Architecture: A System of Patterns". John Wiley & Sons,

1996.

[15] Gamma, E., et al., "Design Patterns-Elements of Reusable

Object-Oriented Software". Addison-Wesley, Reading, MA,

1995.

[16] Bachmann, F., et al., "Deriving Architectural Tactics: A

Step toward Methodical Architectural Design," Tech. Report

CMU/SEI-2003-TR-004, SEI, Carnegie Mellon University,

USA, 2003

[17] Ali-Babar, M., et al., "Mining Patterns for Improving

Architecting Activities - A Research Program and Preliminary

Assessment," Proc. of 9th Int'l. conf. on Empirical Assessment

in Software Engineering. 2005.

[18] Ali-Babar, M., "Scenarios, Quality Attributes, and

Patterns: Capturing and Using their Synergistic Relationships

for Product Line Architectures," Proc. of the Int,l. Workshop

on Adopting Product Line Software Engineering. 2004.

[19] Probst, G.J.B., "Practical Knowledge Management: A

Model That Works",

http://know.unige.ch/publications/Prismartikel.PDF. Last

accessed on 14th March, 2005

[20] Rus, I. and M. Lindvall, "Knowledge Management in

Software Engineering," IEEE Software, 2002. 19(3): pp. 26-38.

[21] Basili, V.R. and G. Caldiera, "Improving Software Quality

Reusing Knowledge and Experience," Sloan Management

Review, 1995. 37(1): pp. 55-64.

[22] Basili, V.R., et al., "The Experience Factory", in

Encyclopedia of Software Engineering, J.J. Marciniak, Editor.

John Wiley & Sons, 2001.

[23] Zhu, L., et al., "Mining Patterns to Support Software

Architecture Evaluation," Proc. of the 4th Working IEEE/IFIP

Conference on Software Architecture. 2004.

[24] Ali-Babar, M., et al., "A Framework for Supporting

Architecture Knowledge and Rationale Management", in

Rationale Management in Software Engineering, A.H. Dutoit,

et al., Editors. Submitted for review, 2005.

[25] Gruber, T.R. and D.M. Russell, "Design Knowledge and

Design Rationale: A Framework for Representing, Capture,

and Use," Tech. Report KSL 90-45, Knowledge Systems

Laboratory, Standford University, California, USA, 1991

[26] Jarczyk, A.P.J., et al., "Design Rationale for Software

Engineering: A Survey," Proc. 25th Hawaii Int'l. Conf. on

System Sciences. 1992.

[27] Williams, L.G. and C.U. Smith, "PASA: An Architectural

Approach to Fixing Software Performance Problems," Proc. of

Int'l. Conference of the Computer Measurement Group. 2002.

[28] Clements, P., et al., "Documenting Software

Architectures: Views and Beyond". Addison-Wesley, 2002.

[29] Davenport, T.H. and L. Prusak, "Working Knowledge".

Harvard Business School Press, Boston, Massachusetts, 1998.

[30] Tiwana, A., "The Knowledge Management Toolkit:

Orchestrating IT, Strategy, and Knowledge Platforms", 2nd ed.

Prentice-Hall, 2002.

[31] Nonaka, I. and H. Takeuchi, "The Knowledge-Creating

Company". Oxford University Press, 1995.

[32] Hansen, M.T., et al., "What's your strategy for managing

knowledge?," Harvard Business Review, March-April 1999:

pp. 106-116.

[33] Land, L.P.W., et al., "Capturing Implicit Software

Engineering Knowledge," Proc. 13th Australian Software

Engineering Conference. 2001.

[34] Skuce, B., "Knowledge management in software design: a

tool and a trial," Software Engineering Journal, Sept. 995: pp.

183-193.

[35] Henninger, S., "Tool Support for Experience-Based

Software Development Methologies," Advances in Computers,

2003. 59: pp. 29-82.

[36] Scott, L., et al., "Understanding the use of an electronic

process guide," Journal of Information and Software

Technology, 2002. 44(10): pp. 601-616.

[37] Liou, Y.I., "Collaborative Knowledge Acquisition,"

Expert Systems With Applications, 1992. 5(1-2): pp. 1-13.

[38] Schneider, K. and T. Schwinn, "Maturing Experience

Base Concepts at Daimler Chrysler," Software Process

Improvement and Practice, 2001. 6(2): pp. 85-96.

[39] Gross, D. and E. Yu, "From Non-Functional

Requirements to Design through Patterns," Proc. of the 6th

Int'l Workshop on Requirements Engineering Foundation for

Software Quality. 2000.

[40] John, B.E., et al., "Bringing Usability Concerns to the

Design of Software Architecture," Proc. of the 9th IFIP

Working Conference on Engineering for Human-Computer

Interaction. 2004.

[41] "Hipergate - Open Source CRM and Groupware",

http://www.hipergate.com. Last accessed on 16th April, 2005

[42] Alur, D., et al., "Core J2EE Patterns: Best Practices and

Design Strategies", 2nd ed. Sun Microsystem Press, 2003.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

