
Not every generational GC is a copying generational
GC. Knowing when to schedule GC can also impact

performance

Which pointer writes to trap
 Writes that may not need to be trapped

 Stores to registers

 Stores to stack

 Initializing stores

 Not easy to detect in many languages

 These stores form the majority of pointer stores

 Stores that should be trapped

 Non-initializing stores

 ~ 1 % of instructions generated by Lisp or ML compilers

2

Trapping & recording inter-gen ptrs
 Entry tables

 Remembered sets

 Sequential store buffer

 Page marking with hardware support

 Page marking with virtual memory support

 Card marking

3

Card marking
 Divide heap into # regions called cards

 Smaller than pages (~ 128 Bytes)

 Requires card table

 Bit is set in card table for a card whenever a word in the
card modified

 Scans dirty cards for inter-generational ptrs at collection
time

 Advantages

 Portable

 Independent of virtual memory system

 Flexible card size can be picked to optimize locality
4

Card marking
 Cost of scanning

 Proportional to number of cards marked

 Proportional to size of card

 GC can use dirtiness info to

 Segregate objects on written-to-cards from clean cards

 Gather dirty cards on same virtual memory page

 # pages holding cards to be scanned is reduced

5

Non-copying generational GC
 Mark-sweep based generational GC

 Yields no worse performance than copying base
collectors

 Zorn’s system

 Four generations, each containing a

 mark bitmap

 fixed-sized-object region

 variable-sized-object region

6

Zorn’s fixed-sized-object region
 Divided into # areas

 Each area stores objects of a fixed size

 Uses mark-and-deferred-sweep GC

 Promotes objects en masse by copying, after 3
collections

7

Zorn’s variable-sized object region
 Holds object that cannot fit in any of the fixed-sized

object areas

 Collects with two semi-space copying collector

 Zorn’s finding

 Mark-sweep collector suffered from greater CPU
overhead

 Mark-sweep collector required 30% to 40% less real
memory than the copying collector

 Promotion thresholds, pause times, cache miss ratio
were important

8

When do we schedule GC
 Two options:

 Hide collections at times when user least likely to notice
pauses

 Trigger efficient collections when there is likely to be
most garbage collected

9

Hiding garbage collection
 In long lived systems

 Perform GC overnight

 Perform GC when machine is idle

 Perform GC at points in program when pause is less
likely to be disruptive

 End of compute-bound periods

 Volume of live data is low

 User given opportunity to interact with program and
does not do so

 Can attach code to monitor user interaction (good heuristic)

 Emacs uses this strategy
10

Key objects as indicators
 Hayes observed that death of objects allocated at

roughly the same time closely correlate

 Object demographics arise from typical programming
style

 Few static pointers to large data structures

 e.g., root of a tree data structure

 When program finish with tree it is only accessible from root

 When ptr to root is deleted, entire tree is garbage

 Use these key objects as indicators for GC

 When death of a cluster no longer predictable by their age,
should be promoted out of time-based generation

 One key object (root of tree) retained in generational scheme
11

Key objects before promotion

12

Root set

Young Objects Keyed Area

Key objects after promotion

13

Root set

Young Objects Keyed Area

Keyed objects

Using a mature object space
 Promote very old objects out of time-based generation

scheme into mature object space, all at once

 Avoid disruptive collections

 Mature object space divided into areas, each with
remembered set

 Each collected one at a time in round-robin fashion

 Area is collected when its remembered set is empty

 What if objects too big to fit in one area?

 Use carriages and train analogy

14

