
Not every generational GC is a copying generational 
GC.  Knowing when to schedule GC can also impact 

performance



Which pointer writes to trap
 Writes that may not need to be trapped

 Stores to registers

 Stores to stack

 Initializing stores

 Not easy to detect in many languages

 These stores form the majority of pointer stores

 Stores that should be trapped

 Non-initializing stores 

 ~ 1 % of instructions generated by Lisp or ML compilers
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Trapping & recording inter-gen ptrs
 Entry tables

 Remembered sets

 Sequential store buffer

 Page marking with hardware support

 Page marking with virtual memory support

 Card marking
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Card marking
 Divide heap into # regions called cards 

 Smaller than pages (~ 128 Bytes)

 Requires card table

 Bit is set in card table for a card whenever  a word in the 
card modified

 Scans dirty cards for inter-generational ptrs at collection 
time

 Advantages

 Portable

 Independent of virtual memory system

 Flexible  card size can be picked to optimize locality
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Card marking
 Cost of scanning

 Proportional to number of cards marked 

 Proportional to size of card

 GC can use dirtiness info to

 Segregate objects on written-to-cards from clean cards

 Gather dirty cards on same virtual memory page

 # pages holding cards to be scanned is reduced
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Non-copying generational GC
 Mark-sweep based generational GC

 Yields no worse performance than copying base 
collectors

 Zorn’s system

 Four generations, each containing a 

 mark bitmap

 fixed-sized-object region

 variable-sized-object region
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Zorn’s fixed-sized-object region
 Divided into # areas

 Each area stores objects of a fixed size

 Uses mark-and-deferred-sweep GC

 Promotes objects en masse by copying, after 3 
collections
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Zorn’s variable-sized object region
 Holds object that cannot fit in any of the fixed-sized 

object areas

 Collects with two semi-space copying collector

 Zorn’s finding

 Mark-sweep collector suffered from greater CPU 
overhead

 Mark-sweep collector required 30% to 40% less real 
memory than the copying collector

 Promotion thresholds, pause times, cache miss ratio 
were important

8



When do we schedule GC
 Two options:

 Hide collections at times when user least likely to notice 
pauses

 Trigger efficient collections when there is likely to be 
most garbage collected
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Hiding garbage collection
 In long lived systems

 Perform GC overnight

 Perform GC when machine is idle

 Perform GC at points in program when pause is less 
likely to be disruptive

 End of compute-bound periods

 Volume of live data is low

 User given opportunity to interact with program and 
does not do so

 Can attach code to monitor user interaction (good heuristic)

 Emacs uses this strategy
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Key objects as indicators
 Hayes observed that death of objects allocated at 

roughly the same time closely correlate

 Object demographics arise from typical programming 
style

 Few static pointers to large data structures

 e.g., root of a tree data structure

 When program finish with tree it is only accessible from root 

 When ptr to root is deleted, entire tree is garbage

 Use these key objects as indicators for GC

 When death of a cluster no longer predictable by their age, 
should be promoted out of time-based generation

 One key object (root of tree)  retained in generational scheme
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Key objects before promotion
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Root set

Young Objects Keyed Area 



Key objects after promotion
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Root set

Young Objects Keyed Area 

Keyed objects



Using a mature object space
 Promote very old objects out of time-based generation 

scheme into mature object space, all at once

 Avoid disruptive collections

 Mature object space divided into areas, each with 
remembered set

 Each collected one at a time in round-robin fashion

 Area is collected when its remembered set is empty

 What if objects too big to fit in one area?

 Use carriages and train analogy
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