
A non-moving collector

Organization of heap memory in GC
 Heap memory falls in 4 sets in a GC world

 Scanned objects

 Visited but unscanned objects

 Objects not yet visited

 Free space

 Semi-space copying collector attempts to implement
these spaces

 Baker’s treadmill collector offers another arrangement
of these sets in a non-moving collector

2

Advantages of non-moving collector
 Better suited for uncooperative environments

 Mutator does not need to be protected from changes
made by collector

 Collector does not move objects

 NB: asynchronous movement may be disruptive to
compiler optimization

3

Baker’s treadmill

4

Jones and Lin: Diagram 8.15

Organization of Baker’s Treadmill
 All objects organized into cyclic doubly-linked list

 Hence the name treadmill

 Each color segment in the list is arranged contiguously

 Fourth color, off-white used for free list

 The four segments delimited by four pointers

 free

 B

 T

 Scan

 Similar to his incremental copying collector (see next slide)

5

Best known read-barrier collector

6

Tospace

TBscan

new

allocations

copied

objects
topbottom

 Allocation occurs at top of to_space

to_space

Operation of Treadmill collector
 How is allocation done?

 What about marking? How is it done?

 No manipulation of color bits is necessary. Why?

 If scanned pointer refers to a black or grey object no
action is required

 If object is white, what actions must be taken?
7

Effects of snapping
 Snapping is a constant time operation

 Offers algorithm potential to meet real-time bounds

 Only point at which color needs to be discriminated

 Is object white or not

 If object is snapped at T end of grey segment

 Traversal is breadth-first

 More page faults

 If object is snapped at scan end of grey segment

 Traversal is depth-first

 No auxiliary stack needed
8

More on algorithm
 GC cycle is complete when no grey cells are left

 When scan pointer meets T pointer

 Flip when free pointer meets B pointer

 Only two colors at this point: black and white

 Black segment white

 White segment off-white

 B and T pointers are exchanged

 Treadmill advances its segments

9

Cost of treadmill algorithm
 Expensive with regards to space compared with non-

moving collectors

 Space overhead for Links

 Memory utilization no more than copying collector

 Allocation more expensive than bumping a pointer

 Has problems with handling variable size objects

 Uses read-barrier to synchronize collector with
mutator

 Read-barriers are expensive

10

Hardware support for real-time GC
 No software GC has yet to demonstrate convincing

hard real-time performance

 Read-barrier techniques expensive

 Write-barrier techniques vary in the face of virtual
memory

 Nilsen and Schmidt argue that hard real-time systems
must have hardware support

11

Nilsen’s hardware architecture

12
Jones and Lin: Diagram 8.15

Motivation for Nilsen’s architecture
 General purpose computers, besides supercomputers ,

that rely on specialized hardware have not had
commercial success

 Nilsen isolates GC hardware in a special memory
module that interfaces with the CPU through memory
bus

 Rational: technology investment will be shared
between different processor architecture

13

