
RCGC can be more attractive

Reference counting example

2

Root set
Heap space

1

11

1

2

1

1

Reference counting example

3

Root set
Heap space

1

11

1

1

1

1

Memory
leak

Deficiencies of RCGC
 Cost of removing last pointer unbounded

 Total overhead of adjusting RCs significantly greater
than that of tracing collectors

 Substantial space overhead

 Inability to reclaim cyclic data structures

4

How do we overcome shortcomings?
 Problem

 Inability to reclaim cyclic data structures

 RC of objects in cycle never get to zero

 Cyclic data structures are common

 At application level

 Back pointers (e.g., doubly linked list)

 Back edge in the link to a hash table chain

 At system level

 Functional languages use cycles to express recursion

 Memory leak

 Solution

 Cyclic reference counting
5

Functional programming languages
 Cycles created in well-defined manner

 Treat specially

 Created only by recursive definitions

 References to such structures must follow these restrictions:

 Circular structure created all at once

 Use of proper subset that does not include root is copied as
independent structure, not shared

 Cycle-closing pointers to head of cycles are tagged

 Ensure cycle is treated as single entity

 Access to cycle is only through pointer to its root

6

Bobrow’s technique (#2)
 Distinguish between pointers internal to the cycle

from external references.

 External pointers counted as pointers to structure as a
whole

 Internal pointers not counted

 Idea:

 Collect groups of objects

 Programmer assign objects to groups

 Each group is reference counted

 Group membership determined by object’s address

7

Bobrow’s technique
update(R, S){

T = *R

gr = group_no(R)

if gr != group_no(S) // external reference

increment_groupRC(S)

if gr != group_no(T) // external reference

decrement_groupRC(T)

if groupRC(T) == 0

reclaim_group(T)

*R = S

}

8

Weak pointer algorithms (#3)
 Distinguishing cycle closing pointers (weak pointers)

from other references (strong pointers)

 Basis: Two invariants:

 Each live object must be reachable from a root by a chain
of strong pointers (strongly reachable)

 Strong pointers must never be allowed to form cycles

 Objects have 2 RC

 Strong RC (SRC)

 Pointers to new objects

 Weak RC (WRC)

 Closing link on pointer copy

9

Weak pointer algorithms
// Brownbridge’s new

new() {

if freeList == empty

abort “Memory exhausted”

newCell = allocate()

SRC(newCell) = 1

return strong(newCell)

}

10

//Salkild’s update

update(R, S){

WRC(S) = WRC(S) + 1

delete(*R)

*R = S

weaken(*R)

}

Disadvantages of weak pointer alg.
 Cyclic structures can be incorrectly discarded

 Algorithm fails to terminate in some cases

 A suicide pass searches for and breaks strong cycles

 Pathological case can lead to exponential time
complexity in the worst case

 Space overhead is high: 2 RC fields

11

Hybrid algorithms (#4)
 Most objects freed by RC

 Ideal candidates are uniquely referenced

 Cyclic structures freed by mark-sweep collector

 Shared objects are cycle candidates

 Lin’s algorithm (Lazy tracing of graphs)

 Do not trace sub-graph every time shared pointer is
deleted

 Save values of deleted pointers in control set

 Traps pointer writes

 Uses extra field to colors objects

 At suitable time search control set for garbage
12

Lin’s Algorithm
Uses for colors for objects

Black:

• Active objects are painted black; including new objects

White:

• Garbage and free cells are painted white

Gray:

• Cells visited in marking phase are painted grey, have to be visited again

Purple:

• Cells that may be part of isolated cycles, have to be traversed by collector

13

Lin’s algorithm
 When pointer to shared object deleted, object painted

purple

 Address put in control set

 Avoids duplicate in control set

 New objects are allocated black

 Both arguments to update() must be removed from
control set to prevent them from being mark-swept

 They must be active

 Painted black

 Control set used to identify potential free space

 Mark-sweep is used if picking object from it is still purple 14

Details of Lin’s algorithm
// New objects allocated black

delete(T) {

RC(T) = RC(T) – 1

if RC(T) == 0

color(T) = black

for U in children(T)

delete(*U)

free(T)

else if color(T) != purple

if control_set is full

gc_control_set()

color(T) = purple

push(T, control_set)

}
15

update(R, S){

RC(S) = RC(S) + 1

color(R) = black

color(S) = black

delete(*R)

*R = S

}

Details of Lin’s algorithm
 Discussion of mark-sweep algorithm in text

 Example helps explain algorithm

 Will differ discussion until we explore mark-sweep

16

