B—Z

Reclaiming cyclic
structures in RCGC

e attractive

Reference counting example

Root set Heap space

o—

Reference counting example =
Root set Heap space leak

— e e

e

Deficiencies of RCGC

Cost of removing last pointer unbounded

Total overhead of adjusting RCs significantly greater
than that of tracing collectors

Substantial space overhead
Inability to reclaim cyclic data structures

How do we overcome shortcomings?

Problem

e Inability to reclaim cyclic data structures
» RC of objects in cycle never get to zero

o Cyclic data structures are common

At application level
- Back pointers (e.g., doubly linked list)
- Back edge in the link to a hash table chain

At system level

- Functional languages use cycles to express recursion

» Memory leak
Solution
e Cyclic reference counting

Functional programming languages

Cycles created in well-defined manner
e Treat specially

Created only by recursive definitions
References to such structures must follow these restrictions:

Circular structure created all at once

Use of proper subset that does not include root is copied as
independent structure, not shared

Cycle-closing pointers to head of cycles are tagged

Ensure cycle is treated as single entity

Access to cycle is only through pointer to its root

Bobrow’s technique (#2)

* Distinguish between pointers internal to the cycle
from external references.

» External pointers counted as pointers to structure as a
whole

¢ Internal pointers not counted

* Idea:
e Collect groups of objects
e Programmer assign objects to groups
e Each group is reference counted

e Group membership determined by object’s address

Bobrow’s technique

update(R, S){

=R

gr = group_no(R)

if gr = group_no(S) /| external reference
increment_groupRC(S)

if gr = group_no(T) /| external reference
decrement_groupRC(T)
if groupRC(T) == o

reclaim_group(T)
*R

I
n

Weak pointer algorithms (

» Distinguishing cycle closing pointers (weak pointers)
from other references (strong pointers)

e Basis: Two invariants:

3)

e Each live object must be reachable from a root by a chain

of strong pointers (strongly reachable)

e Strong pointers must never be allowed to form cycles

e Objects have 2 RC
» Strong RC (SRC)

- Pointers to new objects
« Weak RC (WRC)

« Closing link on pointer copy

Weak pointer algorithms

// Brownbridge’s new
new() {
if freeList == empty
abort “Memory exhausted”
newCell = allocate()
SRC(newCell) =1

return strong(newCell)

}

//Salkild’s update
update(R, S){
WRC(S) = WRC(S) +1
delete(*R)
*R=S

weaken(*R)

10

Disadvantages of weak pointer alg.

Cyclic structures can be incorrectly discarded

Algorithm fails to terminate in some cases
e A suicide pass searches for and breaks strong cycles

Pathological case can lead to exponential time
complexity in the worst case

Space overhead is high: 2 RC fields

184

Hybrid algorithms (#4)

* Most objects freed by RC

e Ideal candidates are uniquely referenced

* Cyclic structures freed by mark-sweep collector

e Shared objects are cycle candidates
* Lin’s algorithm (Lazy tracing of graphs)
e Do not trace sub-graph every time shared pointer is
deleted
e Save values of deleted pointers in control set
 ‘Traps pointer writes

 Uses extra field to colors objects

At suitable time search control set for garbage .

/

Lin’s Algorithm

Uses for colors for objects

Black:

- Active objects are painted black; including new objects

White:

 Garbage and free cells are painted white

)
—/

Gray:

» Cells visited in marking phase are painted grey, have to be visited again

Purple:

* Cells that may be part of isolated cycles, have to be traversed by collector

Lin’s algorithm

When pointer to shared object deleted, object painted
purple
e Address put in control set

e Avoids duplicate in control set

New objects are allocated black

Both arguments to update() must be removed from
control set to prevent them from being mark-swept

e They must be active
e Painted black

e Control set used to identify potential free space

« Mark-sweep is used if picking object from it is still purple ,

Details of Lin’s algorithm

/| New objects allocated black
delete(T) {
RelE) Rkl
if RC(T) == 0
color(T) = black
for U in children(T)
delete(*U)
free(T)
else if color(T) != purple
if control_set is full
gc_control_set()
color(T) = purple
push(T, control_set)

update(R, S){
RC(S) = RC(S) +1
color(R) = black
color(S) = black
delete(*R)
R s

15

/ e
Details of Lin’s algorithm

Discussion of mark-sweep algorithm in text
Example helps explain algorithm
Will differ discussion until we explore mark-sweep

16

