


RCGC Defined

Each object has associated count of references to it
e Object’s reference count

When reference to object created
e Pointer points from one place to another

e assignment

e RC of pointee is incremented
When reference to object is eliminated

e RC of object-pointed-from is decremented

When RC of object equals zero

e Object is reclaimed



Reference counting

Requires space overhead to store reference count
e Where is this field stored?
e Isitvisible at the language level?

Requires time overhead to increment/decrement RCs
e RCs maintained in real-time

e RCGC is incremental

UNIX file system uses reference counting for files and
directories
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Reclaiming objects with RCGC

* When an object is reclaimed
e Its pointer fields are examined
e RC of any object it hold pointers to is decremented
o Why?
* Reclaiming one object may
e Lead to the transitive decrementing of RCs
e Lead to reclaiming of other objects

« How?
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RCGC strengths

* Incremental nature of operation
e Updating RCs interleaved with program execution
e Can easily be made completely real-time

- Transitive reclamation of large data structures can be deferred

 Keep list of freed object s whose RCs have not been processed

e Good for interactive applications (good response time)
* Easy to implement
* Can reuse freed storage immediately
* Good spatial locality

e Access pattern to virtual memory no worse than
application -



Reference counting weaknesses

RC takes up space
e A whole machine word

» Ability to represent any # of pointers the system can
accommodate

RC consumes time

e Updating pointer to point to a new object
» Check to see that it is not a reference to self
» Decrement RC of old pointee, possibly deleting it
« Update pointer with address of new pointee

» Increment RC of new pointee
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Reference count weaknesses

One missed RC update can result in dangling pointers
or memory leak

Cannot reclaim circular structures
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Reference counting example =
Root set Heap space leak
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RCGC algorithm: RC allocation

allocate() {
newCell = freeList
freeList = next(freeList)

return newCell

new(){
if (freeList == NULL){
abort “Memory exhausted”

}

newCell = allocate()
RC(newCell) =1
return newCell
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RCGC algorithm: Updating pointers

free(N) { update(R, S){
next(N) = freeList RC(S) = RC(S) +1
freeList = N delete(*R)

} SRS

}
delete(T){
RE(T) = RE(T) ~a
if RC(T) == o
for U in children(T)
delete(*U)
free(T)
}
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An example
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