


RCGC Defined

Each object has associated count of references to it
e Object’s reference count

When reference to object created
e Pointer points from one place to another

e assignment

e RC of pointee is incremented
When reference to object is eliminated

e RC of object-pointed-from is decremented

When RC of object equals zero

e Object is reclaimed



Reference counting

Requires space overhead to store reference count
e Where is this field stored?
e Isitvisible at the language level?

Requires time overhead to increment/decrement RCs
e RCs maintained in real-time

e RCGC is incremental

UNIX file system uses reference counting for files and
directories



/X/

Reclaiming objects with RCGC

* When an object is reclaimed
e Its pointer fields are examined
e RC of any object it hold pointers to is decremented
o Why?
* Reclaiming one object may
e Lead to the transitive decrementing of RCs
e Lead to reclaiming of other objects

« How?



Reference counting example

Root set
Heap space




Reference counting example

Root set
Heap space

o—




Reference counting example

Root set Heap space




Reference counting example

Root set Heap space

o—




RCGC strengths

* Incremental nature of operation
e Updating RCs interleaved with program execution
e Can easily be made completely real-time

- Transitive reclamation of large data structures can be deferred

 Keep list of freed object s whose RCs have not been processed

e Good for interactive applications (good response time)
* Easy to implement
* Can reuse freed storage immediately
* Good spatial locality

e Access pattern to virtual memory no worse than
application -



Reference counting weaknesses

RC takes up space
e A whole machine word

» Ability to represent any # of pointers the system can
accommodate

RC consumes time

e Updating pointer to point to a new object
» Check to see that it is not a reference to self
» Decrement RC of old pointee, possibly deleting it
« Update pointer with address of new pointee

» Increment RC of new pointee

10



Reference count weaknesses

One missed RC update can result in dangling pointers
or memory leak

Cannot reclaim circular structures

184



Reference counting example

Root set Heap space

o—

12



Reference counting example

Root set Heap space

13



Reference counting example =
Root set Heap space leak

14



RCGC algorithm: RC allocation

allocate() {
newCell = freeList
freeList = next(freeList)

return newCell

new(){
if (freeList == NULL){
abort “Memory exhausted”

}

newCell = allocate()
RC(newCell) =1
return newCell

15



/X/

RCGC algorithm: Updating pointers

free(N) { update(R, S){
next(N) = freeList RC(S) = RC(S) +1
freeList = N delete(*R)

} SRS

}
delete(T){
RE(T) = RE(T) ~a
if RC(T) == o
for U in children(T)
delete(*U)
free(T)
}

16



FAAA ISR SIS IIAIIIASIIAASIAAIIASIFAIAIAIIAAISIRAIRAARAAAIIAIRIAIRAAASRRAIIAAIAAASIAS

An example

7“

Reference count

\

n

left

right

1 left

17



freeList

YA
x | left
e -
left | right

Vv

next




. 0 REEE
freeList




