
How do we mark reachable objects?

Disadvantages of mark-sweep GC
 Stop-the-world algorithm

 Computation suspended while GC runs

 Pause time may be high

 Not practical for real-time, interactive applications, video
games

 High cost:

 proportional to size of heap (not just live objects)

 Why?

 Active objects visited by mark phase

 All of memory visited by sweep phase

2

Mark-sweep algorithm
// The mark-sweep collector

mark_sweep() {

for R in Roots

mark(*R)

sweep()

if free_pool is empty

abort "Memory exhausted"

}

// Simple recursive marking

mark(N) {

if mark_bit(N) == unmarked

mark_bit(N) = marked

for M in Children(N)

mark(*M)

}
3

// The eager sweep of the heap

sweep() {

N = Heap_bottom

while N < Heap_top

if mark_bit(N) == unmarked

free(N)

else mark_bit(N) = unmarked

N = N + size(N)

}

How can we improve marking?
 Using a marking stack

 Problem:

 Recursion may cause system stack to overflow

 Procedure overhead: both time and space

 Solutions:

 Replace recursive calls with iterative loops

 Use auxiliary data structures (e.g., a stack data structure)

 Stack holds pointers to objects known to be live

 Unmarked children marked, pushed on stack if have pointers

 Objects without pointers only marked

 Marking phase terminates when stack is empty

4

Marking stack
 Maximum depth of stack

 Depends on longest path through graph that has to be
marked

 In most systems stacks are generally shallow

 Safe GC must be able to handle exceptional cases

 May need to minimize stack depth

5

Iterative Marking

6

mark_heap() {

mark_stack = empty

for R in Roots

mark_bit(*R) = marked

push(*R, mark_stack)

mark()

}

mark() {

while mark_stack != empty

N = pop(mark_stack)

for M in Children(N)

if mark_bit(*M) == unmarked

mark_bit(*M) = marked

if not atom(*M)

push(*M, mark_stack)

}

Marking with resumption stack

Minimizing stack depth
 Why is this important?

 Stack can overflow

 Whys is GC needed?

 What if the GC runs out of storage?

 How can it be done?

 push constituent pointers of large objects in small
groups onto the stack (Boehm-Demers-Weiser)

 Using pointer reversal

7

Addressing stack overflow
 Marking stack can make detection easier and recovery

action taken

 Check in each push operation ($$$$$$)

 Single check by counting # of pointers in each popped
node

 Use guard page (if OS support)

 Read-only page. Cannot push unto guard page

 How to handle stack overflow?

 Knuth’s approach

 Kurokawa’s approach

8

Knuth proposed in 1973
 Treat marking stack circularly

for R in Roots

push(*R, new_roots);

overflow = false;

while true

overflow = cyclic_stack_mark(new_roots);

if overflow == true

new_roots = scan_heap();

else break;

 scan_heap returns marked nodes pointing to
unmarked nodes

9

Kurokawa proposal in 1981
 On overflow run Stacked Node Checking algorithm

 remove items from stack that have fewer than 2
unmarked children

 no child is unmarked: clear slot

 one child is unmarked: replace slot entry by a
descendent with 2 or more unmarked children
marking the passed ones

 Not robust

 Possible that no additional space will be found on the
stack

10

Pointer reversal
 Eliminate need for marking stack

 Push stack in heap nodes

 Maintains 3 variables: previous, current, and next

 Any efficient marking process must record the branch-
points it passed

 Temporarily reversing of pointers traversed by mark

 child-pointers become ancestor-pointers

 restore pointer fields when tracing back

 developed independently by Schorr and Waite (1967)
and by Deutsch (1973)

11

Pointer reversal

advance retreat

switch

enter

unmarked

atom or
marked

internal node
of sub-graph

head of
graph

head of
sub-graph

DFA for binary tree structures

12

Pointer reversal (advance phase)

previous

current

13

Pointer reversal (advance phase)

previous

current

14

Pointer reversal (advance phase)

previous

current

next

15

Pointer reversal (advance phase)

previous

current

next

16

Pointer reversal (advance phase)

previous

current

next

17

Pointer reversal (advance phase)

previous

current

next

18

Pointer reversal (switch phase)

previous

current

next

19

Pointer reversal (switch phase)

previous

current

next

20

Pointer reversal (switch phase)

previous

current

next

21

Pointer reversal (switch phase)

previous

current

next

22

Pointer reversal (switch phase)

previous

current

next

23

Pointer reversal (switch phase)

previous

current

next

24

Pointer reversal (retreat phase)

previous

current

next

25

Pointer reversal (retreat phase)

previous

current

next

26

Pointer reversal (retreat phase)

previous

current

next

27

Pointer reversal (retreat phase)

previous

current

next

28

Pointer reversal (retreat phase)

previous

current

next

29

