
How do we mark reachable objects?



Disadvantages of mark-sweep GC
 Stop-the-world algorithm

 Computation suspended while GC runs

 Pause time may be high

 Not practical for real-time, interactive applications, video 
games

 High cost: 

 proportional to size of heap (not just live objects)

 Why?

 Active objects visited by mark phase

 All of memory visited by sweep phase
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Mark-sweep algorithm
// The mark-sweep collector

mark_sweep() {

for R in Roots

mark(*R)

sweep()

if free_pool is empty

abort "Memory exhausted"

}

// Simple recursive marking

mark(N) {

if mark_bit(N) == unmarked

mark_bit(N) = marked

for M in Children(N)

mark(*M)

}
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// The eager sweep of the heap

sweep() {

N = Heap_bottom

while N < Heap_top

if mark_bit(N) == unmarked

free(N)

else mark_bit(N) = unmarked

N = N + size(N)

}



How can we improve marking?
 Using a marking stack

 Problem: 

 Recursion may cause system stack to overflow

 Procedure overhead:  both time and space

 Solutions:

 Replace recursive calls with iterative loops 

 Use auxiliary data structures (e.g., a stack data structure)

 Stack holds pointers to objects known to be live

 Unmarked children marked, pushed on stack if have pointers

 Objects without pointers only marked

 Marking phase terminates when stack is empty
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Marking stack
 Maximum depth of stack 

 Depends on longest path through graph that has to be 
marked

 In most systems stacks are generally shallow

 Safe GC must be able to handle exceptional cases

 May need to minimize stack depth
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Iterative Marking
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mark_heap() {

mark_stack = empty

for R in Roots

mark_bit(*R) = marked

push(*R, mark_stack)

mark()

}

mark() {

while mark_stack != empty

N = pop(mark_stack)

for M in Children(N)

if mark_bit(*M) == unmarked

mark_bit(*M) = marked

if not atom(*M)

push(*M, mark_stack)

}

Marking with resumption stack



Minimizing stack depth
 Why is this important?

 Stack can overflow

 Whys is GC needed?

 What if the GC runs out of storage?

 How can it be done?

 push constituent pointers of large objects in small 
groups onto the stack (Boehm-Demers-Weiser)

 Using pointer reversal
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Addressing stack overflow
 Marking stack can make detection easier and recovery 

action taken

 Check in each push operation ($$$$$$)

 Single check by counting # of pointers in each popped 
node

 Use guard page (if OS support)

 Read-only page.  Cannot push unto guard page

 How to handle stack overflow?

 Knuth’s approach

 Kurokawa’s approach
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Knuth proposed in 1973
 Treat marking stack circularly

for R in Roots

push(*R, new_roots);

overflow = false;

while true

overflow = cyclic_stack_mark(new_roots);

if overflow == true

new_roots = scan_heap();

else break;

 scan_heap returns marked nodes pointing to 
unmarked nodes
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Kurokawa proposal in 1981
 On overflow run Stacked Node Checking algorithm

 remove items from stack that have fewer than 2 
unmarked children

 no child is unmarked: clear slot

 one child is unmarked: replace slot entry by a 
descendent with 2 or more unmarked children 
marking the passed ones

 Not robust 

 Possible that no additional space will be found on the 
stack

10



Pointer reversal
 Eliminate need for marking stack

 Push stack in heap nodes

 Maintains 3 variables:  previous, current, and next

 Any efficient marking process must record the branch-
points it passed

 Temporarily reversing of pointers traversed by mark

 child-pointers become ancestor-pointers

 restore pointer fields when tracing back

 developed independently by Schorr and Waite (1967) 
and by Deutsch (1973)
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Pointer reversal

advance retreat

switch

enter

unmarked

atom or
marked

internal node
of sub-graph

head of
graph

head of
sub-graph

DFA for binary tree structures
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Pointer reversal (advance phase)
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Pointer reversal (advance phase)

previous

current

next

18



Pointer reversal (switch phase)
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Pointer reversal (switch phase)
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Pointer reversal (retreat phase)
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Pointer reversal (retreat phase)
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Pointer reversal (retreat phase)

previous

current

next

27



Pointer reversal (retreat phase)
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Pointer reversal (retreat phase)
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