
Reduces pause time

Types of write barriers
 Snapshot-at-the-beginning

 Prevent loss of original reference

 Incremental update

 Catch changes of connectivity of the graph

2

Incremental mark-sweep collectors
 Steele’s multiprocessing, compactifying collector

 Dijkstra’s on-the-fly collector

 Kung and Song’s improved four-color collector

 Yuasa’s sequential collector

 Uses snapshot-at-the-beginning write-barrier

 Compared using these metrics

 Operation of write-barrier

 Treatment of new objects

 Cost of initialization & termination of each GC cycle

3

Write-barrier
 Role is to prevent mutation of graph from interfering

with collector’s traversal

 Snapshot-at-the-beginning write-barrier

 Prevents loss of original ref to white object

 Shades original ref (B) grey

 Incremental update write barrier

 Records potentially disruptive pointers

 Colors either A or C grey
4

B C

A

B C

A

Using tricolor abstraction
 Can be implemented

 By associating 2 bits with each object

 With mark bit and a stack

 Marked objects considered black unless in mark stack

 Objects in mark stack are considered grey

5

B
C

A

.

.

.

Yuasa’s snapshot write-barrier
 During GC marking phase

 If there is a pointer update:
-- shades old white pointee grey by marking it & pushing

ref to it on mark stack

 Preserves B whether it is garbage or not

 Snapshot write-barriers are very conservative

 Does not preserve no black-white pointer invariant

 (A  C) after update

 New objects allocated during marking allocated black

6

Yuasa’s snapshot write-barrier

7

shade(P) {

if (not marked(P))

mark_bit(P) = marked

gcpush(P, mark_stack)

}

update(A, C){

if (phase == mark_phase){

shade(*A)

}

*A = C

}

Yuasa’s allocator

8

new() {

if (phase == mark_phase){

if (mark_stack ≠ empty) {mark(k1)}

if (mark_stack == empty AND save_stack == empty) {phase = sweep_phase}

else transfer(k2)

} else if (phase == sweep_phase){

sweep(k3)

if (sweeper > Heap_top) {phase = idling}

} else if (free_count < threshold){

phase = mark_phase; sweeper = Heap_bottom

for (R in Roots) { gcpush(R, mark_stack) }

block_copy(system_stack, save_stack)

}

if (free_count == 0) {abort “Heap exhausted”}

temp = allocate(); decrement free_count; mark_bit(temp) = temp ≥ sweeper

return temp

}

Auxiliary procedures for Yuasa’s alg

9

mark(k1) { // traverse k1 objects at a time

i = 0

while (i < k1 AND mark_stack ≠ empty){

P = gcpop(mark_stack)

for (Q in Children(P)){

if (not marked(*Q)){

mark_bit(*Q) = marked

gcpush(*Q, mark_stack)

}

}

i++

}

}

Auxiliary procedures for Yuasa’s alg

10

transfer(k2) { // move k2 items from save_stack to mark_stack

i = 0

while (i < k2 AND save_stack ≠ empty){

P = gcpop(save_stack)

if(pointer(P)){

gcpush(P, mark_stack)

}

i++

}

}

Auxiliary procedures for Yuasa’s alg

11

sweep(k3) { // sweep k3 items

i = 0

while (i < k3 AND sweeper ≤ Heap_top){

if(mark_bit(sweeper) == unmarked){

free(sweeper)

increment free_count

} else {mark_bit(sweeper) = unmarked}

increment sweeper

i++

}

}

