
GC for interactive and real-time systems

Interactive or real-time app concerns
 Reducing length of garbage collection pause

 Demands guarantees for worst case performance

 Generational GC works if:

 Young generation is relatively small

 Survival rate of objects is sufficiently low

2

Interactive or real-time app concerns
 Generational GC does not work if

 Does frequent major collections

 Survival rate is high

 Attempts to improve expected pause time

 At expense of worst case

3

A turn to incremental techniques
 Simplest is RCGC

 Naturally incremental for all operations except

 Deletion of last ptr to an object

 However, recursive freeing can be circumvented

4

Hardware focus
 Sequential architectures

 A task runs to completion on single processor

 Shared memory multiprocessors

 May need locks on certain resources or parts of code

 Synchronization very expensive

5

Incrementalizing sequential GC
 Interleave GC with mutator

 GC must make sufficient progress

 Else mutator will run out of memory

 Tune GC rate with rate of memory consumption:

 Do a small amount of marking/copying with each allocation

 To prevent mutator from running out of memory additional
headroom is needed

6

Tuning GC rate
 To prevent mutator from running out of memory

additional headroom is needed

 R = # active words in heap at start of collection

 K = # words traced at each allocation

 Need R/K calls to allocator to mark all active words

 At most R(1 + 1/K) live objects at end of tracing

 Memory needed to prevent mutator starvation

7

Does incremental mean real-time
 Hard real-time: Results must be computed on time

 Late result is as useless as incorrect result

 Require worst-case guarantees NOT average case

 Most demand space bounds, avoid virtual memory

 Soft real-time: Prefers that results are on time

 Late results better than no results at all

 Many so called real-time GC cannot realistically meet
worst-case deadline for hard real-time systems

 They offer average case pause times

8

The need for synchronization
 Asynchronous execution

 Independent execution of two or more process in a
multitasking system

 Execution of a process "in the background".

 Other processes may be started before an asynchronous
process has finished

 Garbage collector

 Can run as its own process (thread)

 Can have fixed interleaving within single sequential process

 Introduces inconsistency in status of heap objects

9

Synchronization defined
 Timekeeping which requires the coordination of

events to operate a system in unison

 System must be in sync

 The coordination of simultaneous threads or processes
to complete a task

 In order to obtain correct runtime order and avoid
unexpected race conditions

10

Synchronization example

11

root

A B

C

root

Step 1

A B

C

root

A B

C

Step 2

update(right(B), right(A))

right(A) = NULL step 1

update(right(A), right(B))

right(B) = NULL step 2

Coherence problem
 Incremental mark-sweep collector

 Poses multiple-readers, single writer coherence problem

 Both mutator and collector read pointers

 Only mutator modify (write) pointers

 Incremental copy collector

 Poses multiple-readers, multiple-writers problem

 Collector also writes pointers when it moves objects

 Mutator’s view of the world must be consistent

 Collector has conservative view of reachability graph

 Treat some unreachable objects as if they are reachable
12

Conservative collection
 GC and mutator do not need to have same view of

reachability graph

 Introduces floating garbage

 Became unreachable during last GC cycle

 Will be collected during next cycle

 Fragments heap

 Increases effective residency of program

 Puts pressure on GC

13

Judging incremental collectors
 Degree of conservatism is one parameter

 Bounds on mutator pause

 GC must delay computation briefly at each step to
make progress

 Contain uninterruptible sections (increments)

 Process root set

 Check for termination of GC cycle

14

Tricolor abstraction
 Used for copying collection

 Used with Lin’s algorithm (4 colors) for reclaiming
cycles

 Was originally introduced by Dijkstra to describe
incremental collection

 Black

 Grey

 White

 GC cycle terminates when all reachable objects are
colored black

15

Tricolor marking

Black:

• Object and immediate descendents have been visited

• GC finished with these objects; don’t have to visit them again

White:

• Objects not visited, are garbage at end of tracing phase

Gray:

• Object must be visited by collector

• Object visited by collector but descendants have not been scanned

• Object whose connectivity to rest of graph has been altered by mutator behind
collector’s back

16

Synchronization example

17

root

A B

C

root

Step 1

A B

C

root

A B

C

Step 2

update(right(B), right(A))

right(A) = NULL step 1

update(right(A), right(B))

right(B) = NULL step 2

Nodes A or C should be colored grey.

Using barriers
 Mutator can disrupt GC by writing to black objects

 Introducing black to white pointers

 How to prevent this?

 Ensure mutator never sees white objects

 Need to protect white objects with read barrier

 Record where mutator writes pointers to white objects
in black objects

 Protect objects concerned with write barrier (mark them grey)

 Collector re/visits objects concerned

18

Falsely reclaiming objects
 Object must be visible to mutator but invisible to

collector

 Both of these conditions for failure must hold (during
marking phase) for this to happen

 A pointer to a white object must be written in a black
object

 This must be the only ref to white object

 Original ref to white object must be destroyed

 Write barrier methods solve mutator-collector
communication problem

 tackle at least 1 condition of failure
19

