
GC for interactive and real-time systems

Interactive or real-time app concerns
 Reducing length of garbage collection pause

 Demands guarantees for worst case performance

 Generational GC works if:

 Young generation is relatively small

 Survival rate of objects is sufficiently low

2

Interactive or real-time app concerns
 Generational GC does not work if

 Does frequent major collections

 Survival rate is high

 Attempts to improve expected pause time

 At expense of worst case

3

A turn to incremental techniques
 Simplest is RCGC

 Naturally incremental for all operations except

 Deletion of last ptr to an object

 However, recursive freeing can be circumvented

4

Hardware focus
 Sequential architectures

 A task runs to completion on single processor

 Shared memory multiprocessors

 May need locks on certain resources or parts of code

 Synchronization very expensive

5

Incrementalizing sequential GC
 Interleave GC with mutator

 GC must make sufficient progress

 Else mutator will run out of memory

 Tune GC rate with rate of memory consumption:

 Do a small amount of marking/copying with each allocation

 To prevent mutator from running out of memory additional
headroom is needed

6

Tuning GC rate
 To prevent mutator from running out of memory

additional headroom is needed

 R = # active words in heap at start of collection

 K = # words traced at each allocation

 Need R/K calls to allocator to mark all active words

 At most R(1 + 1/K) live objects at end of tracing

 Memory needed to prevent mutator starvation

7

Does incremental mean real-time
 Hard real-time: Results must be computed on time

 Late result is as useless as incorrect result

 Require worst-case guarantees NOT average case

 Most demand space bounds, avoid virtual memory

 Soft real-time: Prefers that results are on time

 Late results better than no results at all

 Many so called real-time GC cannot realistically meet
worst-case deadline for hard real-time systems

 They offer average case pause times

8

The need for synchronization
 Asynchronous execution

 Independent execution of two or more process in a
multitasking system

 Execution of a process "in the background".

 Other processes may be started before an asynchronous
process has finished

 Garbage collector

 Can run as its own process (thread)

 Can have fixed interleaving within single sequential process

 Introduces inconsistency in status of heap objects

9

Synchronization defined
 Timekeeping which requires the coordination of

events to operate a system in unison

 System must be in sync

 The coordination of simultaneous threads or processes
to complete a task

 In order to obtain correct runtime order and avoid
unexpected race conditions

10

Synchronization example

11

root

A B

C

root

Step 1

A B

C

root

A B

C

Step 2

update(right(B), right(A))

right(A) = NULL step 1

update(right(A), right(B))

right(B) = NULL step 2

Coherence problem
 Incremental mark-sweep collector

 Poses multiple-readers, single writer coherence problem

 Both mutator and collector read pointers

 Only mutator modify (write) pointers

 Incremental copy collector

 Poses multiple-readers, multiple-writers problem

 Collector also writes pointers when it moves objects

 Mutator’s view of the world must be consistent

 Collector has conservative view of reachability graph

 Treat some unreachable objects as if they are reachable
12

Conservative collection
 GC and mutator do not need to have same view of

reachability graph

 Introduces floating garbage

 Became unreachable during last GC cycle

 Will be collected during next cycle

 Fragments heap

 Increases effective residency of program

 Puts pressure on GC

13

Judging incremental collectors
 Degree of conservatism is one parameter

 Bounds on mutator pause

 GC must delay computation briefly at each step to
make progress

 Contain uninterruptible sections (increments)

 Process root set

 Check for termination of GC cycle

14

Tricolor abstraction
 Used for copying collection

 Used with Lin’s algorithm (4 colors) for reclaiming
cycles

 Was originally introduced by Dijkstra to describe
incremental collection

 Black

 Grey

 White

 GC cycle terminates when all reachable objects are
colored black

15

Tricolor marking

Black:

• Object and immediate descendents have been visited

• GC finished with these objects; don’t have to visit them again

White:

• Objects not visited, are garbage at end of tracing phase

Gray:

• Object must be visited by collector

• Object visited by collector but descendants have not been scanned

• Object whose connectivity to rest of graph has been altered by mutator behind
collector’s back

16

Synchronization example

17

root

A B

C

root

Step 1

A B

C

root

A B

C

Step 2

update(right(B), right(A))

right(A) = NULL step 1

update(right(A), right(B))

right(B) = NULL step 2

Nodes A or C should be colored grey.

Using barriers
 Mutator can disrupt GC by writing to black objects

 Introducing black to white pointers

 How to prevent this?

 Ensure mutator never sees white objects

 Need to protect white objects with read barrier

 Record where mutator writes pointers to white objects
in black objects

 Protect objects concerned with write barrier (mark them grey)

 Collector re/visits objects concerned

18

Falsely reclaiming objects
 Object must be visible to mutator but invisible to

collector

 Both of these conditions for failure must hold (during
marking phase) for this to happen

 A pointer to a white object must be written in a black
object

 This must be the only ref to white object

 Original ref to white object must be destroyed

 Write barrier methods solve mutator-collector
communication problem

 tackle at least 1 condition of failure
19

