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Interactive or real-time app concerns

* Reducing length of garbage collection pause
* Demands guarantees for worst case performance

* Generational GC works if:
e Young generation is relatively small
e Survival rate of objects is sufficiently low
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Interactive or real-time app concerns

* Generational GC does not work if
e Does frequent major collections
e Survival rate is high

e Attempts to improve expected pause time
« At expense of worst case
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A turn to incremental techniques
* Simplest is RCGC

e Naturally incremental for all operations except
e Deletion of last ptr to an object

- However, recursive freeing can be circumvented
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Hardware focus

* Sequential architectures
e A task runs to completion on single processor

* Shared memory multiprocessors
e May need locks on certain resources or parts of code

e Synchronization very expensive



Incrementalizing sequential GC

Interleave GC with mutator
GC must make sufficient progress

e Else mutator will run out of memory

e Tune GC rate with rate of memory consumption:
» Do a small amount of marking/copying with each allocation

« To prevent mutator from running out of memory additional
headroom is needed



Tuning GC rate

* To prevent mutator from running out of memory
additional headroom is needed

e R = # active words in heap at start of collection

e K =# words traced at each allocation

e Need R/K calls to allocator to mark all active words
e At most R(1 + 1/K) live objects at end of tracing

« Memory needed to prevent mutator starvation



Does incremental mean real-time

* Hard real-time: Results must be computed on time
e Late result is as useless as incorrect result
e Require worst-case guarantees NOT average case
e Most demand space bounds, avoid virtual memory
* Soft real-time: Prefers that results are on time
e Late results better than no results at all

* Many so called real-time GC cannot realistically meet
worst-case deadline for hard real-time systems

e They offer average case pause times



The need for synchronization

* Asynchronous execution

e Independent execution of two or more process in a
multitasking system

e Execution of a process "in the background".

e Other processes may be started before an asynchronous
process has finished

e Garbage collector
» Can run as its own process (thread)

» Can have fixed interleaving within single sequential process
- Introduces inconsistency in status of heap objects



Synchronization defined

* Timekeeping which requires the coordination of
events to operate a system in unison

e System must be in sync

* The coordination of simultaneous threads or processes
to complete a task

e In order to obtain correct runtime order and avoid
unexpected race conditions
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Synchronization example
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Coherence problem

* Incremental mark-sweep collector
e Poses multiple-readers, single writer coherence problem
e Both mutator and collector read pointers
e Only mutator modify (write) pointers
* Incremental copy collector
e Poses multiple-readers, multiple-writers problem
e Collector also writes pointers when it moves objects

* Mutator’s view of the world must be consistent
* Collector has conservative view of reachability graph

e Treat some unreachable objects as if they are reachable
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Conservative collection

* GC and mutator do not need to have same view of
reachability graph
* Introduces floating garbage
e Became unreachable during last GC cycle
e Will be collected during next cycle
e Fragments heap
e Increases effective residency of program
e Puts pressure on GC
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Judging incremental collectors

* Degree of conservatism is one parameter

* Bounds on mutator pause

e GC must delay computation briefly at each step to
make progress

e Contain uninterruptible sections (increments)
» Process root set
» Check for termination of GC cycle
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Tricolor abstraction

Used for copying collection

Used with Lin’s algorithm (4 colors) for reclaiming
cycles

Wias originally introduced by Dijkstra to describe
incremental collection

e Black
e Grey
e White

GC cycle terminates when all reachable objects are
colored black
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Tricolor marking

* Object and immediate descendents have been visited

* GC finished with these objects; don’t have to visit them again

| White: ]

* Objects not visited, are garbage at end of tracing phase

Gray:

+ Object must be visited by collector
* Object visited by collector but descendants have not been scanned

* Object whose connectivity to rest of graph has been altered by mutator behind
collector’s back
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Synchronization example
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update(right(B), right(A))

right(A) = NULL step 1
update(right(A), right(B))
right(B) = NULL step 2
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Nodes A or C should be colored grey. Step 2
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Using barriers

Mutator can disrupt GC by writing to black objects
e Introducing black to white pointers

How to prevent this?
e Ensure mutator never sees white objects
« Need to protect white objects with read barrier

e Record where mutator writes pointers to white objects
in black objects
» Protect objects concerned with write barrier (mark them grey)
 Collector re/visits objects concerned
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Falsely reclaiming objects

Object must be visible to mutator but invisible to
collector

Both of these conditions for failure must hold (during
marking phase) for this to happen
e A pointer to a white object must be written in a black
object
« This must be the only ref to white object
e Original ref to white object must be destroyed
Write barrier methods solve mutator-collector
communication problem

e tackle at least 1 condition of failure
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