%-/

Incremental and

Ime SYStemS

Interactive or real-time app concerns

* Reducing length of garbage collection pause
* Demands guarantees for worst case performance

* Generational GC works if:
e Young generation is relatively small
e Survival rate of objects is sufficiently low

/X/

Interactive or real-time app concerns

* Generational GC does not work if
e Does frequent major collections
e Survival rate is high

e Attempts to improve expected pause time
« At expense of worst case

/X/

A turn to incremental techniques
* Simplest is RCGC

e Naturally incremental for all operations except
e Deletion of last ptr to an object

- However, recursive freeing can be circumvented

/X/

Hardware focus

* Sequential architectures
e A task runs to completion on single processor

* Shared memory multiprocessors
e May need locks on certain resources or parts of code

e Synchronization very expensive

Incrementalizing sequential GC

Interleave GC with mutator
GC must make sufficient progress

e Else mutator will run out of memory

e Tune GC rate with rate of memory consumption:
» Do a small amount of marking/copying with each allocation

« To prevent mutator from running out of memory additional
headroom is needed

Tuning GC rate

* To prevent mutator from running out of memory
additional headroom is needed

e R = # active words in heap at start of collection

e K =# words traced at each allocation

e Need R/K calls to allocator to mark all active words
e At most R(1 + 1/K) live objects at end of tracing

« Memory needed to prevent mutator starvation

Does incremental mean real-time

* Hard real-time: Results must be computed on time
e Late result is as useless as incorrect result
e Require worst-case guarantees NOT average case
e Most demand space bounds, avoid virtual memory
* Soft real-time: Prefers that results are on time
e Late results better than no results at all

* Many so called real-time GC cannot realistically meet
worst-case deadline for hard real-time systems

e They offer average case pause times

The need for synchronization

* Asynchronous execution

e Independent execution of two or more process in a
multitasking system

e Execution of a process "in the background".

e Other processes may be started before an asynchronous
process has finished

e Garbage collector
» Can run as its own process (thread)

» Can have fixed interleaving within single sequential process
- Introduces inconsistency in status of heap objects

Synchronization defined

* Timekeeping which requires the coordination of
events to operate a system in unison

e System must be in sync

* The coordination of simultaneous threads or processes
to complete a task

e In order to obtain correct runtime order and avoid
unexpected race conditions

10

Synchronization example

s

A [0 update(right(B), right(A))
right(A) = NULL step 1

\ update(right(A), right(B))
right(B) = NULL step 2

-)

AN B [¢ AN, B

_ —~

cU c

Step 1 Step 2

184

Coherence problem

* Incremental mark-sweep collector
e Poses multiple-readers, single writer coherence problem
e Both mutator and collector read pointers
e Only mutator modify (write) pointers
* Incremental copy collector
e Poses multiple-readers, multiple-writers problem
e Collector also writes pointers when it moves objects

* Mutator’s view of the world must be consistent
* Collector has conservative view of reachability graph

e Treat some unreachable objects as if they are reachable

12

Conservative collection

* GC and mutator do not need to have same view of
reachability graph
* Introduces floating garbage
e Became unreachable during last GC cycle
e Will be collected during next cycle
e Fragments heap
e Increases effective residency of program
e Puts pressure on GC

13

Judging incremental collectors

* Degree of conservatism is one parameter

* Bounds on mutator pause

e GC must delay computation briefly at each step to
make progress

e Contain uninterruptible sections (increments)
» Process root set
» Check for termination of GC cycle

14

Tricolor abstraction

Used for copying collection

Used with Lin’s algorithm (4 colors) for reclaiming
cycles

Wias originally introduced by Dijkstra to describe
incremental collection

e Black
e Grey
e White

GC cycle terminates when all reachable objects are
colored black

15

Tricolor marking

* Object and immediate descendents have been visited

* GC finished with these objects; don’t have to visit them again

| White:]

* Objects not visited, are garbage at end of tracing phase

Gray:

+ Object must be visited by collector
* Object visited by collector but descendants have not been scanned

* Object whose connectivity to rest of graph has been altered by mutator behind
collector’s back

16

Synchronization example

s

S)

\

.

A

C

Step 1

X/

update(right(B), right(A))

right(A) = NULL step 1
update(right(A), right(B))
right(B) = NULL step 2

;0

‘B/ A Ii ?\A BIi
(] c
Nodes A or C should be colored grey. Step 2

17

Using barriers

Mutator can disrupt GC by writing to black objects
e Introducing black to white pointers

How to prevent this?
e Ensure mutator never sees white objects
« Need to protect white objects with read barrier

e Record where mutator writes pointers to white objects
in black objects
» Protect objects concerned with write barrier (mark them grey)
 Collector re/visits objects concerned

18

Falsely reclaiming objects

Object must be visible to mutator but invisible to
collector

Both of these conditions for failure must hold (during
marking phase) for this to happen
e A pointer to a white object must be written in a black
object
« This must be the only ref to white object
e Original ref to white object must be destroyed
Write barrier methods solve mutator-collector
communication problem

e tackle at least 1 condition of failure
19

