
How exactly do we promote objects

Benefits of generational collection
 Benefits:

 Collect only a part of the heap

 Pause time diminish

 GC becomes feasible for interactive systems

 “Can I garbage collect while tracking the mouse?”

 Avoid repeatedly processing objects that remain alive

 Overall effort of GC can be reduced

 Locality of the collector can be improved

2

Cost of generational collection
 Cost:

 System must be able to distinguish old from young
objects

 Cost associated with storing in old object pointer to
young object can be very expensive

3

Generational copy collector

4

Youngest

Oldest

To-space

From-space

From-space

To-space

root

set

.

.

.

Middle

generation(s)

Inter-generational pointers
 Created in 2 ways

 storing pointers in object (assignment)

 Object containing pointers promoted to older gen.

 Burden on mutator or collector to track

 Promotion: can be easily tracked by collector

 Assignment: need write barrier to trap and record

 Recall most stores are in local variables

 Only need to record old-young pointers, Why?

 They are rare

 They become roots for minor collection

5

Goals of generational collection
 Aims of generational GC:

 Reduce cost of dealing with long lived objects

 Reduce garbage collection pause time

 Interactive program test

 Depends on amount of data that survives a collection

 Depends on size of generation

 small more frequent collection

 Large less frequent collection

 Achievable by segregating objects by age

6

Effects of premature promotion
 Objects should not be promoted prematurely

 Basis of generational GC is to allow as many objects as
possible to die in youngest generation

 Need promotion threshold

 If too low:

 promote soon-to-be tenured garbage

 Old generation fills quickly major collection

 Major collection longer pause

 More inter-generational pointers

 What about write-barrier cost?

7

What policies to use for promotion?
 Multiple generations

 Promotion threshold

 Adaptive tenuring (promotion)

8

Multiple generations
 Two generations offer

 Reduced pause time

 Reduce copying overhead

 What about multiple generations?

 Filter objects prematurely promoted from youngest gen.

 Increase chances that they will die before promotion to
oldest generation

 Fill up more slowly than youngest generation

 Will be collected less often

9

Multiple generation: Other effects
 Allow new objects to be promoted quickly

 Keeps youngest generation fairly small

 Reduces pause incurred when scavenging it

 Does not increase volume of permanent garbage

10

Multiple generations: limitations
 Pause time for collecting intermediate generation may

still be disruptive

 More pointers from old to younger generations will be
created

 Size of root set for younger generations increases

11

Promotion threshold
 Promotion rates also depend on number of minor

collections object must survive before promotion

 Copy count of 1 en masse promotion even though
some objects are extremely young

 Leads to promotion rates that are 50% to 100% higher

 Copy count of 2 has following properties

 Denies promotion to recently created objects

 Highly effective

 Reducing survivors by a factor of 2 while increasing copy cost
by < ½

 Beyond 2 produces very little benefit

12

Dilema for fixed promotion policies
 Consider small youngest generation

 Shortens interval between scavenges

 Shortens pause length

 Consider larger generations

 Reduces promotion rates

 Gives objects longer to die

 Scavenges less often copying overhead is reduced

 But pause length is increased

 So how does fixed promotion policies handle this
dilema?

13

Adaptive tenuring
 Tuning generational collection is complex and time

consuming

 What if program has varying allocation rates?

 Fixed policies do not have a way to adjust tenure rate
and prevent collector from thrashing

 Adaptive tenuring:

 Invoke collector when volume of data allocated since last
collection exceeds an allocation threshold

 Dynamically vary size of semi-spaces if necessary

 Threshold-based policy more stable than fixed-size
generation policy

14

Two flavors of adaptive tenuring
 Only tenure when it is necessary

 Only tenure as many objects as necessary

 Objects’ age given in bytes allocated

 More memory allocated since object creation older
object

 Less memory allocated since object creation younger
object

 Pause time given as bytes copied

15

Only tenure when it is necessary
 # of objects that survive a scavenge is used to predict

pause time of next scavenge

 Definition of pause time

 Time measured in bytes

 If few objects survive a scavenge (less than threshold)

 Probably not worth promoting them

 GC pause less than max acceptable pause

 Consider write-barrier cost

16

Only Tenure as many objects as
necessary
 If survivor size suggests maximum pause time (in

bytes) would be exceeded at next scavenge

 Set age threshold to value to allow excess data to be
promoted

 Survivors scanned to produce table recording volume of
object of each age

 Table then scanned (descending order) to look for
promotion threshold for next minor collection

17

Pioneers of adaptive tenuring
 Ungar and Jackson feedback mediation

 Barett and Zorn threaten boundary and
remembered set

 Next class

 Generation organization

 Age recording

 Inter-generational pointers

18

