otion policies

ote objects




/X/

Benefits of generational collection

* Benefits:
e Collect only a part of the heap
e Pause time diminish

e GC becomes feasible for interactive systems
« “Can I garbage collect while tracking the mouse?”

e Avoid repeatedly processing objects that remain alive
e Overall effort of GC can be reduced
e Locality of the collector can be improved



Cost of generational collection

® Cost:

e System must be able to distinguish old from young
objects

e Cost associated with storing in old object pointer to
young object can be very expensive



Generational copy collector

root il _ Youngest
= L
' From-space To-space
%
% \ Middle

generation(s)
J
= Oldest

From-space To-space




Inter-generational pointers

* Created in 2 ways
e storing pointers in object (assignment)
e Object containing pointers promoted to older gen.

® Burden on mutator or collector to track
e Promotion: can be easily tracked by collector

e Assignment: need write barrier to trap and record
» Recall most stores are in local variables
+ Only need to record old-young pointers, Why?
« They are rare
« They become roots for minor collection



Goals of generational collection

* Aims of generational GC:
e Reduce cost of dealing with long lived objects
e Reduce garbage collection pause time

- Interactive program test
« Depends on amount of data that survives a collection
« Depends on size of generation

- small = more frequent collection

- Large - less frequent collection

e Achievable by segregating objects by age




Effects of premature promotion

Objects should not be promoted prematurely

e Basis of generational GC is to allow as many objects as
possible to die in youngest generation

Need promotion threshold
e If too low:

« promote soon-to-be tenured garbage

Old generation fills quickly = major collection

Major collection = longer pause

More inter-generational pointers
What about write-barrier cost?



What policies to use for promotion?

Multiple generations
Promotion threshold
Adaptive tenuring (promotion)



/X/

Multiple generations

* Two generations offer
e Reduced pause time
e Reduce copying overhead

* What about multiple generations?
e Filter objects prematurely promoted from youngest gen.

e Increase chances that they will die before promotion to
oldest generation

e Fill up more slowly than youngest generation
e Will be collected less often



Multiple generation: Other effects

Allow new objects to be promoted quickly
Keeps youngest generation fairly small

e Reduces pause incurred when scavenging it

Does not increase volume of permanent garbage

10



Multiple generations: limitations

Pause time for collecting intermediate generation may
still be disruptive

More pointers from old to younger generations will be
created

Size of root set for younger generations increases

184



Promotion threshold

Promotion rates also depend on number of minor
collections object must survive before promotion
e Copy count of 1 > en masse promotion even though
some objects are extremely young
 Leads to promotion rates that are 50% to 100% higher
e Copy count of 2 has following properties
« Denies promotion to recently created objects
 Highly effective
« Reducing survivors by a factor of 2 while increasing copy cost
by < %2
e Beyond 2 produces very little benetfit

12



Dilema for fixed promotion policies

* Consider small youngest generation
e Shortens interval between scavenges
e Shortens pause length
* Consider larger generations
e Reduces promotion rates
e Gives objects longer to die
e Scavenges less often = copying overhead is reduced

 But pause length is increased

* So how does fixed promotion policies handle this
dilema?

13



Adaptive tenuring

* Tuning generational collection is complex and time
consuming
* What if program has varying allocation rates?

e Fixed policies do not have a way to adjust tenure rate
and prevent collector from thrashing

* Adaptive tenuring:
e Invoke collector when volume of data allocated since last
collection exceeds an allocation threshold
e Dynamically vary size of semi-spaces if necessary

e Threshold-based policy more stable than fixed-size

generation policy
14



Two flavors of adaptive tenuring

* Only tenure when it is necessary
* Only tenure as many objects as necessary

* Objects’ age given in bytes allocated

e More memory allocated since object creation = older
object

e Less memory allocated since object creation = younger
object

* Pause time given as bytes copied

15



Only tenure when it is necessary

* # of objects that survive a scavenge is used to predict
pause time of next scavenge

e Definition of pause time
e Time measured in bytes

e If few objects survive a scavenge (less than threshold)
 Probably not worth promoting them
« GC pause less than max acceptable pause

o Consider write-barrier cost

16



y Tenure as many objects as

necessary

* If survivor size suggests maximum pause time (in
bytes) would be exceeded at next scavenge

e Set age threshold to value to allow excess data to be
promoted

e Survivors scanned to produce table recording volume of
object of each age

e Table then scanned (descending order) to look for
promotion threshold for next minor collection

17



Pioneers of adaptive tenuring

* Ungar and Jackson = feedback mediation

* Barett and Zorn = threaten boundary and
remembered set

* Next class
e Generation organization
e Age recording

e Inter-generational pointers

18



