
How exactly do we promote objects

Benefits of generational collection
 Benefits:

 Collect only a part of the heap

 Pause time diminish

 GC becomes feasible for interactive systems

 “Can I garbage collect while tracking the mouse?”

 Avoid repeatedly processing objects that remain alive

 Overall effort of GC can be reduced

 Locality of the collector can be improved

2

Cost of generational collection
 Cost:

 System must be able to distinguish old from young
objects

 Cost associated with storing in old object pointer to
young object can be very expensive

3

Generational copy collector

4

Youngest

Oldest

To-space

From-space

From-space

To-space

root

set

.

.

.

Middle

generation(s)

Inter-generational pointers
 Created in 2 ways

 storing pointers in object (assignment)

 Object containing pointers promoted to older gen.

 Burden on mutator or collector to track

 Promotion: can be easily tracked by collector

 Assignment: need write barrier to trap and record

 Recall most stores are in local variables

 Only need to record old-young pointers, Why?

 They are rare

 They become roots for minor collection

5

Goals of generational collection
 Aims of generational GC:

 Reduce cost of dealing with long lived objects

 Reduce garbage collection pause time

 Interactive program test

 Depends on amount of data that survives a collection

 Depends on size of generation

 small more frequent collection

 Large  less frequent collection

 Achievable by segregating objects by age

6

Effects of premature promotion
 Objects should not be promoted prematurely

 Basis of generational GC is to allow as many objects as
possible to die in youngest generation

 Need promotion threshold

 If too low:

 promote soon-to-be tenured garbage

 Old generation fills quickly major collection

 Major collection  longer pause

 More inter-generational pointers

 What about write-barrier cost?

7

What policies to use for promotion?
 Multiple generations

 Promotion threshold

 Adaptive tenuring (promotion)

8

Multiple generations
 Two generations offer

 Reduced pause time

 Reduce copying overhead

 What about multiple generations?

 Filter objects prematurely promoted from youngest gen.

 Increase chances that they will die before promotion to
oldest generation

 Fill up more slowly than youngest generation

 Will be collected less often

9

Multiple generation: Other effects
 Allow new objects to be promoted quickly

 Keeps youngest generation fairly small

 Reduces pause incurred when scavenging it

 Does not increase volume of permanent garbage

10

Multiple generations: limitations
 Pause time for collecting intermediate generation may

still be disruptive

 More pointers from old to younger generations will be
created

 Size of root set for younger generations increases

11

Promotion threshold
 Promotion rates also depend on number of minor

collections object must survive before promotion

 Copy count of 1  en masse promotion even though
some objects are extremely young

 Leads to promotion rates that are 50% to 100% higher

 Copy count of 2 has following properties

 Denies promotion to recently created objects

 Highly effective

 Reducing survivors by a factor of 2 while increasing copy cost
by < ½

 Beyond 2 produces very little benefit

12

Dilema for fixed promotion policies
 Consider small youngest generation

 Shortens interval between scavenges

 Shortens pause length

 Consider larger generations

 Reduces promotion rates

 Gives objects longer to die

 Scavenges less often  copying overhead is reduced

 But pause length is increased

 So how does fixed promotion policies handle this
dilema?

13

Adaptive tenuring
 Tuning generational collection is complex and time

consuming

 What if program has varying allocation rates?

 Fixed policies do not have a way to adjust tenure rate
and prevent collector from thrashing

 Adaptive tenuring:

 Invoke collector when volume of data allocated since last
collection exceeds an allocation threshold

 Dynamically vary size of semi-spaces if necessary

 Threshold-based policy more stable than fixed-size
generation policy

14

Two flavors of adaptive tenuring
 Only tenure when it is necessary

 Only tenure as many objects as necessary

 Objects’ age given in bytes allocated

 More memory allocated since object creation  older
object

 Less memory allocated since object creation  younger
object

 Pause time given as bytes copied

15

Only tenure when it is necessary
 # of objects that survive a scavenge is used to predict

pause time of next scavenge

 Definition of pause time

 Time measured in bytes

 If few objects survive a scavenge (less than threshold)

 Probably not worth promoting them

 GC pause less than max acceptable pause

 Consider write-barrier cost

16

Only Tenure as many objects as
necessary
 If survivor size suggests maximum pause time (in

bytes) would be exceeded at next scavenge

 Set age threshold to value to allow excess data to be
promoted

 Survivors scanned to produce table recording volume of
object of each age

 Table then scanned (descending order) to look for
promotion threshold for next minor collection

17

Pioneers of adaptive tenuring
 Ungar and Jackson  feedback mediation

 Barett and Zorn  threaten boundary and
remembered set

 Next class

 Generation organization

 Age recording

 Inter-generational pointers

18

