
Segregation by age

Why generational garbage collection
 Simple tracing collectors suffer from a # of drawbacks

 All active data must be marked or copy

 Delays caused by GC can be obtrusive

 Deferred RC can be used to smooth out cost of GC

 But has high CPU overhead and cannot reclaim cycles

 Spend much time dealing with long-lived objects

 Repeatedly copies or marks

 Role of GC?

 To reclaim garbage

 Improve locality of system

 Interact well with virtual memory and cache
2

Weak generational hypothesis
 Lifetime of many objects is short

 Studies have shown that as high as 98% of objects can
become garbage between GC cycles

 Weak generational hypothesis

 Most objects die young [Ungar, 1984]

 Insights

 Concentrate efforts on collecting young objects

3

Weak generational hypothesis
 Benefits:

 Collect only a part of the heap

 Pause time diminish

 GC becomes feasible for interactive systems

 “Can I garbage collect while tracking the mouse?”

 Avoid repeatedly processing objects that remain alive

 Overall effort of GC can be reduced

 Locality of the collector can be improved

4

Weak generational hypothesis
 Cost:

 System must be able to distinguish old from young
objects

 Cost associated with storing in old object pointer to
young object can be very expensive

5

Generational strategy
 Segregate objects by age into 2 or more regions in heap

 Each is called a generation

 Number of generations varies with implementation

 One scheme: vary number of generations dynamically

 Collect different generations at different frequencies

 Collect young generation most frequently

 Minor collection

 Collect older generations least frequently

 Major collection

6

Impact of generational GC
 Often used with incremental collection schemes

 Generational techniques have been very successful

 Use is widespread

 All commercial Lisps

 Modula-3, Glasgow Haskell, commercial SmallTalk systems

 For many applications today is collection system of choice

7

How does generational GC work?
 Objects first allocated in youngest generation

 Objects promoted to older generation if they survive
long enough

 Youngest generation collected most frequently

 Weak generational hypothesis

 Promote objects to older generation

 After # of minor collections collect older generation

 Eliminate tenured garbage

 Collect younger generation when you collect older generation

 If more than 2 generations, promote objects to even older
generation

8

A simple example

9

Young

Old

root

set
A

B

C

D

E

F

G

Collect young generation

10

Young

Old

root

set
A

B

F

G

Promote survivors to old generation

11

Young

Old

root

set

A

B

F

G

Tenured
garbage

Allocate new object in young gen.

12

Young

Old

root

set

A

B

F

G

Tenured
garbage

H

Properties of generational GC
 It is possible to collect younger generations without

collecting older generations

 Young objects that survive # of minor collections
promoted to older generation

 Minor collection successfully collect all short-lived
objects in graph

 Inter-generational pointer (from G to B)

 G treated as part of root set for minor collection

 Garbage in older generation (tenured garbage)
cannot be reclaimed by minor collection

13

Generational copy collector

14

Youngest

Oldest

To-space

From-space

From-space

To-space

root

set

.

.

.

Middle

generation(s)

Other generational observations
 Can determine objects’ age by wall-clock-time or by

growth rate due to allocation

 Strong generational hypothesis

 The older an object is the less likely it is to die

 Not generally true

 Advantages:

 Pauses for GC are shorter

 Less data to trace or copy at each collection

 Total volume of data moved throughout entire program
is smaller

 Effective with short-lived objects
15

Inter-generational pointers
 Created in 2 ways

 storing pointers in object (assignment)

 Object containing pointers promoted to older gen.

 Burden on mutator or collector to track

 Promotion: can be easily tracked by collector

 Assignment: need write barrier to trap and record

 Recall most stores are in local variables

 Only need to record old-young pointers, Why?

 They are rare

 They become roots for minor collection

16

