
How do we organize generations or record age?

Generation organization
 One [semi-]space per generation

 Simplest promotion policy:

 Advance all live objects at once

 No need to record object ages

 Use older generation as to_space OR recycle youngest gen.

 Requires multiple generations to filter tenured garbage

 Promotion rate is high

2

Generation organization
 Creation space

 Divide generation into creation space and aging space

 Allocate objects in creation space

 Aging space stores survivors from creation space

 # of survivors of each scavenge expected to be low, both
spaces can be small

 For good performance

 Hold creation space in memory

 Do not swap it out

3

Age recording
 Not necessary for en masse promotion schemes

 All survivors are promoted

 Methods requiring object’s age could

 Record object’s age in its header

 Cost? Manipulated? Copied?

 Segregate objects of different ages within a generation

 Shaw uses buckets

 New bucket aging bucket next generation

 Buckets != generation

4

Buckets vs Generations

5

What about large objects?
 Use large object space

 Use as in copy collector

 Save pause time

 How large is large?

 Absolute measure: e.g., > 1024 bytes

 Relative measure: e.g., occupy > 10% of to-space

 Should headers be promoted?

 Some algorithms do

 Some algorithms do not want to risk letting headers
become tenured garbage

6

Inter-generational ptrs
 Generational collectors reduce pause time:

 They collecting only a region of the heap

 The only reference to an object in this region may be

 A ptr from outside the region

 An inter-generational ptr.

 Must be identified and treated as part of root set

 Whose responsibility?

7

Identifying inter-generational ptrs
 Simplest approach:

 Scan older-generation at collection time

 Introduces no cost to mutator, but

 Requires more scanning

 Has terrible locality of reference

 Start at roots and follow their objects for inter-generational
ptrs

 More precise methods for recording them?

8

Write-barrier usage
 Recall

 Inter-generational ptrs arise in two ways

 Promotion of objects to old generation - detected by collector

 Pointer stores – How do we detect and record?

 Scan older generations?

 Use a write-barrier

 Write-barrier:

 Interception of writes to certain memory locations by
mutator

 Implemented in

 Hardware; Software; OS support

9

Hardware write-barrier
 Requires no additional instructions

 Advantageous in presence of uncooperative compilers

 Requires special-purpose hardware

 Modifications to virtual-memory systems not always
readily available

10

Software write-barrier
 Have compiler emit a few instructions before each ptr

read or write

 Implementers must consider these factors:

 Minimization of cost to mutator

 Space overhead of recording ptr writes

 Efficiency of identifying old-young ptrs at collection
time

 Do we inline the write-barrier code?

11

OS supported write-barrier
 Uses virtual memory protection mechanism

 To trap access to protected pages

 Use virtual memory page modification dirty bits

 As map of locations of objects with updated ptr fields

 Advantage of using virtual memory

 It is portable

 Requires no changes to compiler

12

Which pointer writes to trap
 Writes that may not need to be trapped

 Stores to registers

 Stores to stack

 Initializing stores

 Not easy to detect in many languages

 These stores form the majority of pointer stores

 Stores that should be trapped

 Non-initializing stores

 ~ 1 % of instructions generated by Lisp or ML compilers

13

Trapping & recording inter-gen ptrs
 Entry tables

 Remembered sets

 Sequential store buffer

 Page marking with hardware support

 Page marking with virtual memory support

 Card marking

14

Entry tables
 First generational collector

 [implemented by Liberman & Hewitt , 1983]

 Made objects from old gen to point indirectly to objects
in young gen

 Each gen had an entry table of refs from older gen to
younger gen

 Storing pointer to young gen object from old gen object
resulted in adding new entry to young gen’s entry table

 If old object already contains ref to item in entry table, that
entry was removed

15

Entry table example

16

Generation 2 Generation 1 Generation 0

Effects of using entry table
 Advantages:

 When collecting young generation,

 No need to search every older generation

 Only scan its entry table

 Disadvantages:

 Indirection scheme

 Table may contain duplicate references to a single object

 Cost α # store operations vs # inter-gen ptrs

 Most modern gen collectors avoid indirection

 They record location of ptrs instead

17

Remembered sets
 Ungar’s Generational Scavenging Collector

 Records objects that point to younger generations

 Write-barrier implemented in software

 It intercepts stores to check

 Whether pointer was being stored

 Whether ref to young object stored in old object

 Address of such object added to remembered set

 Object has bit in header to indicate if already in remembered
set

18

Remembered set example

19

Old Generation Young Generation

Remembered set

Effects of using remembered set
 Advantages:

 Scanning costs at collection time dependent on # of
remembered set objects, not number of pointers

 Disadvantages:

 Cost of store checking is high

 If multiple ptrs written into old object between collections ,
checks would be repeated

 Object would be scanned in its entirety at collection
time

 Why?

20

Reducing scanning cost
 Remember location of ptr in object in remembered set

 Problems:

 Increase size of remembered set

 Multiple entries for large objects if large objects have
multiple ptrs modified

 Approaches to reduce write-barrier costs while
limiting space & time overhead

 Use vector of address for stored-into-object

 If overflow add more space or run GC

 GC filters the list of objects that meet certain requirements

21

