
How do we organize generations or record age?

Generation organization
 One [semi-]space per generation

 Simplest promotion policy:

 Advance all live objects at once

 No need to record object ages

 Use older generation as to_space OR recycle youngest gen.

 Requires multiple generations to filter tenured garbage

 Promotion rate is high

2

Generation organization
 Creation space

 Divide generation into creation space and aging space

 Allocate objects in creation space

 Aging space stores survivors from creation space

 # of survivors of each scavenge expected to be low, both
spaces can be small

 For good performance

 Hold creation space in memory

 Do not swap it out

3

Age recording
 Not necessary for en masse promotion schemes

 All survivors are promoted

 Methods requiring object’s age could

 Record object’s age in its header

 Cost? Manipulated? Copied?

 Segregate objects of different ages within a generation

 Shaw uses buckets

 New bucket  aging bucket  next generation

 Buckets != generation

4

Buckets vs Generations

5

What about large objects?
 Use large object space

 Use as in copy collector

 Save pause time

 How large is large?

 Absolute measure: e.g., > 1024 bytes

 Relative measure: e.g., occupy > 10% of to-space

 Should headers be promoted?

 Some algorithms do

 Some algorithms do not want to risk letting headers
become tenured garbage

6

Inter-generational ptrs
 Generational collectors reduce pause time:

 They collecting only a region of the heap

 The only reference to an object in this region may be

 A ptr from outside the region

 An inter-generational ptr.

 Must be identified and treated as part of root set

 Whose responsibility?

7

Identifying inter-generational ptrs
 Simplest approach:

 Scan older-generation at collection time

 Introduces no cost to mutator, but

 Requires more scanning

 Has terrible locality of reference

 Start at roots and follow their objects for inter-generational
ptrs

 More precise methods for recording them?

8

Write-barrier usage
 Recall

 Inter-generational ptrs arise in two ways

 Promotion of objects to old generation - detected by collector

 Pointer stores – How do we detect and record?

 Scan older generations?

 Use a write-barrier

 Write-barrier:

 Interception of writes to certain memory locations by
mutator

 Implemented in

 Hardware; Software; OS support

9

Hardware write-barrier
 Requires no additional instructions

 Advantageous in presence of uncooperative compilers

 Requires special-purpose hardware

 Modifications to virtual-memory systems not always
readily available

10

Software write-barrier
 Have compiler emit a few instructions before each ptr

read or write

 Implementers must consider these factors:

 Minimization of cost to mutator

 Space overhead of recording ptr writes

 Efficiency of identifying old-young ptrs at collection
time

 Do we inline the write-barrier code?

11

OS supported write-barrier
 Uses virtual memory protection mechanism

 To trap access to protected pages

 Use virtual memory page modification dirty bits

 As map of locations of objects with updated ptr fields

 Advantage of using virtual memory

 It is portable

 Requires no changes to compiler

12

Which pointer writes to trap
 Writes that may not need to be trapped

 Stores to registers

 Stores to stack

 Initializing stores

 Not easy to detect in many languages

 These stores form the majority of pointer stores

 Stores that should be trapped

 Non-initializing stores

 ~ 1 % of instructions generated by Lisp or ML compilers

13

Trapping & recording inter-gen ptrs
 Entry tables

 Remembered sets

 Sequential store buffer

 Page marking with hardware support

 Page marking with virtual memory support

 Card marking

14

Entry tables
 First generational collector

 [implemented by Liberman & Hewitt , 1983]

 Made objects from old gen to point indirectly to objects
in young gen

 Each gen had an entry table of refs from older gen to
younger gen

 Storing pointer to young gen object from old gen object
resulted in adding new entry to young gen’s entry table

 If old object already contains ref to item in entry table, that
entry was removed

15

Entry table example

16

Generation 2 Generation 1 Generation 0

Effects of using entry table
 Advantages:

 When collecting young generation,

 No need to search every older generation

 Only scan its entry table

 Disadvantages:

 Indirection scheme

 Table may contain duplicate references to a single object

 Cost α # store operations vs # inter-gen ptrs

 Most modern gen collectors avoid indirection

 They record location of ptrs instead

17

Remembered sets
 Ungar’s Generational Scavenging Collector

 Records objects that point to younger generations

 Write-barrier implemented in software

 It intercepts stores to check

 Whether pointer was being stored

 Whether ref to young object stored in old object

 Address of such object added to remembered set

 Object has bit in header to indicate if already in remembered
set

18

Remembered set example

19

Old Generation Young Generation

Remembered set

Effects of using remembered set
 Advantages:

 Scanning costs at collection time dependent on # of
remembered set objects, not number of pointers

 Disadvantages:

 Cost of store checking is high

 If multiple ptrs written into old object between collections ,
checks would be repeated

 Object would be scanned in its entirety at collection
time

 Why?

20

Reducing scanning cost
 Remember location of ptr in object in remembered set

 Problems:

 Increase size of remembered set

 Multiple entries for large objects if large objects have
multiple ptrs modified

 Approaches to reduce write-barrier costs while
limiting space & time overhead

 Use vector of address for stored-into-object

 If overflow add more space or run GC

 GC filters the list of objects that meet certain requirements

21

