
What about other storage reclamation schemes?

Garbage collection design choices
 Stop-the-world

 Incrementality

 Hybrid

 Concurrency

 Parallelism

2

Hybrid collection
 Generational collectors

 Collect young objects frequently

 Young objects die quickly

 Example

 Copy collection for young objects

 Non-copy collection for older objects

 Partitioning

 Copy intra-partition incrementally

 Reference count inter-partition

3

Concurrent collection
 Application is called a mutator

 GC regards application as such because it is mutating
the heap

 Mutator and GC function at the same time except
when GC needs info from mutator

 Synchronization

4

Parallel collection
 Concurrency among multiple GC threads

 Load balancing

 Synchronization

 Race condition when tracing

5

Memory management options
 Manual /explicit memory management

 Strengths?

 Challenges?

 Automated memory management (garbage collection)

 Strengths?

 Challenges?

 Any others?

6

Real-time garbage collection (RTGC)
 Real-time system

 A system that meets real-time requirements.

 Real-time requirements

 As expected, operations must be logically correct

 Additionally, operations must be completed within
deadline

 RTGC

 Bounded-time allocation

 Predictable deallocation

 Must be incremental

7

Real-time garbage collection (RTGC)

8

public void f(){

startLaser();

Obj o = new Obj();

stopLaser();

}

public static void main(…){

f();

}

Time
Good for

Real-Time

RTGC strengths and challenges
 Need extra storage

 Store state of application when collector runs

 Application can allocate memory during garbage
collection

 Space-time trade-off

9

RTSJ scoped-memory
 RTSJ – Real-time specification for Java proposed by the

Real-time for Java expert group (RTJEG).

 Semi-manual with scopes

 Scopes: regions of memory

 Scopes: limited life times

 Threads allocate from current scope

 Predictable allocation

 Predictable deallocation

 No dangling pointers

10

RTSJ scoped-memory

11

ScopedMemory scope = new ScopedMemory(1024);

scope.enter(new Runnable() {

public void run(){

// do some stuff

someObj o = new someObj();

// do some more stuff

someObj s = new someObj();

}

});

// scope is collected (no threads)

RTSJ scoped-memory challenges
 Restrictive memory model

 Difficult to use

 Can leak memory

12

Memory management options
 Manual/explicit memory management

 Automated memory management (GC)

 Real-time garbage collection

 RTSJ scoped-memory

13

