Choices

n schemes?



Garbage collection design choices
e Stop-the-world

e Incrementality
* Hybrid
* Concurrency

e Parallelism



/X/

Hybrid collection

® Generational collectors

e Collect young objects frequently
« Young objects die quickly

* Example

e Copy collection for young objects

e Non-copy collection for older objects
° Partitioning

e Copy intra-partition incrementally

e Reference count inter-partition



S—

Concurrent collection

Application is called a mutator

GC regards application as such because it is mutating
the heap

Mutator and GC function at the same time except
when GC needs info from mutator

e Synchronization



Parallel collection

* Concurrency among multiple GC threads

e Load balancing
e Synchronization

e Race condition when tracing



Memory management options

* Manual /explicit memory management
e Strengths?
e Challenges?
* Automated memory management (garbage collection)
e Strengths?
e Challenges?

* Any others?



/X/

Real-time garbage collection (RTGC)

* Real-time system
e A system that meets real-time requirements.

* Real-time requirements
e As expected, operations must be logically correct

e Additionally, operations must be completed within
deadline

* RTGC

e Bounded-time allocation
e Predictable deallocation

e Must be incremental



Real-time garbage collection (RTGC)

public void £() {
startlLaser () ;
Obj o = new Obj();
stoplLaser() ;

}

public static void main(..) {
£();

}

Time

Good for
Real-Time



RTGC strengths and challenges

* Need extra storage
e Store state of application when collector runs

* Application can allocate memory during garbage
collection

* Space-time trade-off



RTSJ scoped-memory

* RTSJ - Real-time specification for Java proposed by the
Real-time for Java expert group (RTJEG).
* Semi-manual with scopes
e Scopes: regions of memory
e Scopes: limited life times
e Threads allocate from current scope
e Predictable allocation
e Predictable deallocation
e No dangling pointers

10



/////?//// R
RTSJ scoped-memory

ScopedMemory scope = new ScopedMemory (1024) ;
scope.enter (new Runnable() {
public void run() {
// do some stuff
someObj o = new someObj () ;
// do some more stuff
someObj s = new someObj () ;
}
})

// scope is collected (no threads)




RTSJ scoped-memory challenges

* Restrictive memory model
e Difficult to use

* Can leak memory

12



Memory management options

Manual/explicit memory management
Automated memory management (GC)
Real-time garbage collection

RTS]J scoped-memory

13



