The Basics

/X/

Major concerns

* Explicit memory management

e Reclaiming objects at the right time
* Garbage collection

e Discriminating live objects from garbage
* Both

e Fastallocation

e Fast reclamation

e Low fragmentation

Automated memory management

* Runtime system automatically
e Detects dead objects (garbage detection)
e Reclaims dead objects (garbage reclamation)
e Garbage collection
* Preserves software development time
e Relieves programmer burden

e |ess prone to errors

e Utilized by most modern OOP and scripting
languages
e Python, Java, C#, php

Runtime system performs GC
* E.g. Java virtual machine (JVM)

e Software execution engine that executes your Java
programs

e Java interpreter that converts byte code into OS specific
commands

e Handles related tasks
« Memory management (GC implemented in JVM)

 Security
« Multithreading

/X/

Major concerns

* Explicit memory management

e Reclaiming objects at the right time
* Garbage collection

e Discriminating live objects from garbage
* Both

e Fastallocation

e Fast reclamation

e Low fragmentation

Layout of a program in memory

High address } Command line args and
environment variables

stack

|

heap

Uninitialized data } Initialized to 0 by exec
(bss)

Initialized data

Read from program file by

Low address Text / code exec

Determining object liveness

Live objects are needed in the computation
e Now or in the future

Prove that an object is not live (dead) and reclaim its
storage

Reclaim dead objects soon, after it is last used

How do we estimate liveness in practice?
e Approximate liveness by reachability from outside the
heap
« Unreachable objects are garbage (reclaim storage)
» Reachable objects are live and must not be reclaimed

ldentifying garbage

reference counting
(reachability)

stack heap

An integer is associated .

with every object, e

summing - 2 > \§3
e Stack references 1 /. 1
e Heap references 1 1

Objects with reference 0 0

_><
count of zero are dead w

Problems with reference counting

« Standard problem is that
objects in cycles (and
those touched by such
objects) cannot be
collected (reclaimed)

* Overhead of counting
can be high

stack

heap

e

-

e

=]

[HEN

%

o (ol

N O] || Ik

L

-

ldentifying garbage

* Tracing (reachability)

* Trace reachability from root set
e Processor registers
e Program stack
e Global variables

* Objects traced are reachable
* All other objects are unreachable (garbage)

10

The marking phase

* To find the dead objects, use the process of calculatus
eliminatus

e Find all live objects
e All others are dead

184

The marking phase

 To discover the dead
objects, we
— Find live objects

e Pointers from the stack
to the heap make objects
live

\\

stack

heap

12

e
The marking phase

 To discover the dead
objects, we
— Find live objects

* Pointers from the stack
to the heap make objects
live

* These objects make
other objects live

\\,

stack

heap

A

13

The sweep phase

 To discover the dead stack heap
objects, we
— Find live objects
— Sweep all others away
as dead

/(\\\\/)\

14

Mark and sweep: Tracing example

* To discover the dead stack heap
objects, we
— Find live objects
— Sweep all others away as

)

dead

— Perhaps compact the - > \ >
heap - j

— Problem:

— Mark phase can take
unbounded time

! \

15

Garbage collection design choices
* Stop-the-world

* Incrementality
e Hybrid
e Concurrency

e Parallelism

16

Stop-the-world collectors

Typically used on uniprocessor systems
Suspend application

Run collector from start to finish
Resume application

S—

17

/X/

Stop-the-world collectors

* Execution costs?
e Pause time
 Discovery of live objects (how long does it take?)
e Instruction overhead (per instruction)
e Delay between object death and collection
e Number of collectible objects collected
e Overall execution time
e Worst-case vs average case performance

e frequency

18

Incremental collection

* Interleave GC with application
* Note: for full heap tracing

e Pause time increases with heap size
* Incremental tracing

e Bounded tracing time

e Conservative assumption

 All other objects in heap are live

e Remember pointers from objects in heap

» Add such pointers to root set for tracing

19

