
The Basics

Major concerns
 Explicit memory management

 Reclaiming objects at the right time

 Garbage collection

 Discriminating live objects from garbage

 Both

 Fast allocation

 Fast reclamation

 Low fragmentation

2

Automated memory management
 Runtime system automatically

 Detects dead objects (garbage detection)

 Reclaims dead objects (garbage reclamation)

 Garbage collection

 Preserves software development time

 Relieves programmer burden

 Less prone to errors

 Utilized by most modern OOP and scripting
languages

 Python, Java, C#, php

3

Runtime system performs GC
 E.g. Java virtual machine (JVM)

 Software execution engine that executes your Java
programs

 Java interpreter that converts byte code into OS specific
commands

 Handles related tasks

 Memory management (GC implemented in JVM)

 Security

 Multithreading

4

Major concerns
 Explicit memory management

 Reclaiming objects at the right time

 Garbage collection

 Discriminating live objects from garbage

 Both

 Fast allocation

 Fast reclamation

 Low fragmentation

5

Layout of a program in memory

6

stack

heap

Uninitialized data
(bss)

Initialized data

Text / code

High address

Low address

Command line args and

environment variables

Initialized to 0 by exec

Read from program file by

exec

Determining object liveness
 Live objects are needed in the computation

 Now or in the future

 Prove that an object is not live (dead) and reclaim its
storage

 Reclaim dead objects soon, after it is last used

 How do we estimate liveness in practice?

 Approximate liveness by reachability from outside the
heap

 Unreachable objects are garbage (reclaim storage)

 Reachable objects are live and must not be reclaimed

7

Identifying garbage

8

 reference counting
(reachability)

 An integer is associated
with every object,
summing

 Stack references

 Heap references

 Objects with reference
count of zero are dead

stack heap

1

2

2

1

11

0

00

0

Problems with reference counting

9

• Standard problem is that
objects in cycles (and
those touched by such
objects) cannot be
collected (reclaimed)

• Overhead of counting
can be high

stack heap

1

2

1

1

11

0

00

0

Identifying garbage
 Tracing (reachability)

 Trace reachability from root set

 Processor registers

 Program stack

 Global variables

 Objects traced are reachable

 All other objects are unreachable (garbage)

10

The marking phase
 To find the dead objects, use the process of calculatus

eliminatus

 Find all live objects

 All others are dead

11

The marking phase

12

• To discover the dead
objects, we
– Find live objects

stack heap

• Pointers from the stack
to the heap make objects
live

The marking phase

13

• To discover the dead
objects, we
– Find live objects

• Pointers from the stack
to the heap make objects
live

• These objects make
other objects live

stack heap

The sweep phase

14

• To discover the dead
objects, we
– Find live objects
– Sweep all others away

as dead

stack heap

Mark and sweep: Tracing example

15

• To discover the dead
objects, we
– Find live objects
– Sweep all others away as

dead
– Perhaps compact the

heap
– Problem:

– Mark phase can take
unbounded time

stack heap

Garbage collection design choices
 Stop-the-world

 Incrementality

 Hybrid

 Concurrency

 Parallelism

16

Stop-the-world collectors
 Typically used on uniprocessor systems

 Suspend application

 Run collector from start to finish

 Resume application

17

Stop-the-world collectors
 Execution costs?

 Pause time

 Discovery of live objects (how long does it take?)

 Instruction overhead (per instruction)

 Delay between object death and collection

 Number of collectible objects collected

 Overall execution time

 Worst-case vs average case performance

 frequency

18

Incremental collection
 Interleave GC with application

 Note: for full heap tracing

 Pause time increases with heap size

 Incremental tracing

 Bounded tracing time

 Conservative assumption

 All other objects in heap are live

 Remember pointers from objects in heap

 Add such pointers to root set for tracing

19

