
Dynamic Storage Reclamation

Course Introduction

Roll call and introductions
 Name (nickname)

 Hometown

 Local residence

 Major(s)

 Something exciting you did over the break

2

Administrivia!
 Background

 Syllabus

 Schedule

 Index page

 First assignment due next Tuesday

3

4

Course logistics
 Goals

 Explore GC

 Perform research

 Discussion and presentations

 Read and present papers

 Individual or group project

 Build a collector

 Documentation

 Important part of project

Key concepts in managing memory
 Key challenges and key ideas

 Explicit vs Automated memory management

 In which languages is each done?

 Why?

 Memory allocation

 Contiguous allocation

 Free-list allocation

 Memory reclamation

 Tracing

 Reference counting

5

What is memory management?
 Programs contain

 Objects

 Data

 Occupy memory

 Runtime system must allocate and reclaim memory for
program in an efficient manner

 Why is this important?

 Why is this hard?

 Why is this interesting?

6

Allocation and Reclamation
 Allocation

 Objects dynamically allocated on HEAP

 malloc(), new()

 Reclamation

 Manual/Explicit

 free()

 delete()

 Automated

 Garbage collection (GC)

7

Explicit memory management
pluses
 Efficiency can be very high

 Puts the programmer in control

8

Explicit memory management
challenges
 Consumes software development time

 new  allocate storage for new object

 delete  reclaim storage

 Prone to software faults (reclaim too soon)

9

Foo* p = new Foo();

Foo* q = p;

delete p;

p->DoSomething();

p = NULL;

q->ProcessFoo();

 Statically undecidable

 Problem for developers

Explicit memory management
challenges
 Memory leak (never reclaim)

10

#include <stdlib.h>

void f(void){

void* s;

s = malloc(50);

return;

}

int main(void){

while (1) f();

return 0;

}

Automated memory management
 Runtime system automatically

 Detects dead objects (garbage detection)

 Reclaims dead objects (garbage reclamation)

 Garbage collection

 Preserves software development time

 Relieves programmer burden

 Less prone to errors

 Utilized by most modern OOP and scripting
languages

 Python, Java, C#, php

11

Garbage collection challenges
 Occurs an unpredictable

times

 Duration is unbounded

 Performance efficiency
issues

12

public void f(){

startLaser();

Obj o = new Obj();

stopLaser();

}

public static void main(…){

while (true) f();

}

Time
GC, Bad

for Real-

Time

Major concerns
 Explicit memory management

 Reclaiming objects at the right time

 Garbage collection

 Discriminating live objects from garbage

 Both

 Fast allocation

 Fast reclamation

 Low fragmentation

13

