
AKA the scavenger

Copying garbage collection algorithm
 Divides the heap into two equal parts

 to-space & from-space

 Use one part at a time (to-space)

 When to-space fills up, flip the roles

 Old to-space becomes from-space

 Old from-space becomes to-space

 Copy live objects from from-space to to-space

 Begin by following pointer from the root set

2

Copying garbage collection
 Also known by the following names

 Stop-and-copy garbage collection

 Scavenger

 Garbage objects are simply abandoned in old space

 Picks out worthwhile objects amidst garbage & take them
away

3

Advantages of Copying Collection
 Live data structures are compacted in to-space

 No fragmentation

 Allocate object fast and efficiently

 No free list

 Out-of-space check is a simple pointer comparison

 New memory allocated by simply incrementing free
space pointer

4

Advantages of Copying Collection
 Collects in time proportional to live data

 Avoids stack and/or pointer reversal

 Imposes no overhead on mutator operations

 e.g. pointer updates

 Advantages over RCGC and MSGC have lead to its
widespread adoption

5

Disadvantages of copying collection
 Wastes half your memory

 Copying takes time

6

Allocation in copying collector
init() {

to_space = Heap_bottom

space_size = Heap_size / 2

top_of_space = to_space + space_size

from_space = top_of_space + 1

free = to_space

}

new(n){

if (free + n > top_of_space) {flip()}

if (free + n > top_of_space) { abort “Memory exhausted”}

new_cell = free // allocate()

free = free + n

return new_cell

}
7

Flipping the spaces
flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

}

8

Copying for variable-sized objects
// P points to memory location, not an address

copy(P) {

if (atomic(P) or P == nil) return P // P is not a pointer

if not forwarded(P) // P stores a forwarding address after copied

n = size(P)

P´ = free // reserve space in to_space for copy of P

free = free + n

temp = P[0] // P[0] holds forwarding address

forwarding_address(P) = P´

P´[0] = copy(temp) // Restore P[0]

for i = 1 to i = n – 1 // Copy each field of P to P´

P´[i] = copy(P[i])

return forwarding_address(P) // Stored in P[0]

}
9

Example of how algorithm works

10

0

Root set

To-space

1

From-space

A

B C

D

Flip the spaces

11

0

Root set

From-space

1

To-space

A

B C

D

Copy root object first

12

0

Root set

From-space

1

To-space

A

B C

D

A´

Then copy B: left child of A

13

0

Root set

From-space

1

To-space

A

B C

D

A´

0

B´

Now copy C: right child of A

14

0

Root set

From-space

1

To-space

A

B C

D

A´

0

B´ C´

Copy D: left child of C

15

0

Root set

From-space

1

To-space

A

B C

D

A´

0

B´ C´

1

D´

Copy A: right child of C

16

0

Root set

From-space

1

To-space

A

B C

D

A´

0

B´ C´

1

D´

Analysis of copying collection
 Assume there are L words of live data in heap of size H

words

 Cost of GC is kL

 Realistic value is 10L (k = 10)

 Cost per reclaimed word

 This has no lower bounds as H grows

 If H = 4L then k ~ 10

17

)
2

(L
H

kL



