
RCGC is naturally incremental, how about making it 
concurrent …



Review Incremental mark-sweep 
 Steele’s multiprocessing, compactifying collector

 Dijkstra’s on-the-fly collector

 Kung and Song improved four-color collector

 Yuasa sequential collector

 Uses snapshot-at-the-beginning write-barrier

 Compared using these metrics

 Operation of write-barrier

 Treatment of new objects

 Cost of initialization & termination of each GC cycle

2



Initialization of GC
 In sequential algorithm

 When request for more memory cannot be satisfied

 In serial incremental MM systems

 When free memory falls below a certain threshold

 Yuasa suggests heap space headroom ~ 22%

 How to initiate GC

 Simple method:  

 push pointers in registers, system stack, & global variables on 
marking stack (color them grey)

 Root set may be large

 If suspending mutator, pause may be unbounded
3



Bounding initiation pause
 Kung & Song:

 Push roots on double-ended mark queue one at a time

 Incremental: mutator’s computation is unrestricted

 Yuasa:

 Copy entire program stack to saved_stack using a fast 
copy method (e.g. UNIX memcpy)

 Entries in saved_stack transferred to mark stack k2 at a 
time

 Reduces fragmentation

4



Marking in concurrent system
 Concurrent system:

 Multiple processes or threads execute at the same time 
and potentially interact with each other

 Collector locks mark stack while examining it

5



Termination of GC
 Mark phase completes when no grey object left in heap

 Dijkstra determines this by scanning for grey objects

 Restarts marking from any grey objects encountered

 Marking terminates when no grey object found

 Can marking and sweeping be pipelined?

 Quiennec says yes

 Use two color fields

 Start mark phase of collection cycle n+1 while sweeping in 
cycle n

 Odd collections use one color field while even collections uses 
the other

6



Concurrent reference counting
 Updating a RC must be atomic to avoid race conditions 

between threads

 Can lead to premature collection of objects

 Atomicity requires locking shared objects

 Increases cost of pointer assignment

 Increase mutator performance 

 Run collector in separate thread

 Make collector responsible for updating RC fields

 Mutators no longer update RC but log assignments in a 
block of a transaction queue (figure on next slide)

7



Modula-2+ RC architecture

8

Jones and Lin:  Diagram 8.7



Modula-2+ RC
 Mutator and collector communicates through a 

transaction queue

 When current block is full (~ 16, 384 assignments) or 
aout 40 KB of data allocated

 Mutator notifies collector

 Mutator gets new empty block

 Lock required to prevent simultaneous assignment to 
same shared variable

9



Reducing RC cost
 Distinguish assignments to local variables from 

assignments to global variables and heap data

 Only reference count shared-pointer-valued-variables

 RC is only lower bound of refs to object from local & 
shared variables

10



Mutator code: shared references 

11

update(A, C){

LOCK mutex

insert (A, C, tq) //  insert in transaction queue

if( tq is full){

notify_collector(tq) // send block to collector

tq = gt_next_block()

}

*A = C

}



Modula-2+ RC algorithm
 TQ Block holds details up to some time t0

 Collector interrupts threads one at a time to scan its 
state

 Collector locks mutex to stop a thread 

 Any ref in thread’s state to heap object is saved for later 
use

12



Modula-2+ RC algorithm
 All thread states scanned at time  t1

 Collector adjust RC of pair of variables inserted in tq

 If RC == o, object added to Zero-Count-List (ZCL)

 Object deleted if shared RC== 0 at t0 and local RC == 0 
and not on RHS of assignment 

13



Collector code: shared references 

14

collector(){

while (; ;){

tq = wait_next_block()

for each thread th {

LOCK mutex{

suspend(th)

scan_thread(th)

restart(th)

}

}

adjust_counts(tq)

free_block(tq)

adjust_shared_counts()

process_ZCL()

}



Processing ZCL
 If object’s shared RC no longer 0, it is removed from 

ZCL

 If object is found in a thread state, it is left in ZCL 

 It may be freed in future collection

 Otherwise object is removed from ZCL and recursively 
freed

 Note:  Can reduce cost of assignment

 Use per thread transaction queue 

15


