
RCGC is naturally incremental, how about making it
concurrent …

Review Incremental mark-sweep
 Steele’s multiprocessing, compactifying collector

 Dijkstra’s on-the-fly collector

 Kung and Song improved four-color collector

 Yuasa sequential collector

 Uses snapshot-at-the-beginning write-barrier

 Compared using these metrics

 Operation of write-barrier

 Treatment of new objects

 Cost of initialization & termination of each GC cycle

2

Initialization of GC
 In sequential algorithm

 When request for more memory cannot be satisfied

 In serial incremental MM systems

 When free memory falls below a certain threshold

 Yuasa suggests heap space headroom ~ 22%

 How to initiate GC

 Simple method:

 push pointers in registers, system stack, & global variables on
marking stack (color them grey)

 Root set may be large

 If suspending mutator, pause may be unbounded
3

Bounding initiation pause
 Kung & Song:

 Push roots on double-ended mark queue one at a time

 Incremental: mutator’s computation is unrestricted

 Yuasa:

 Copy entire program stack to saved_stack using a fast
copy method (e.g. UNIX memcpy)

 Entries in saved_stack transferred to mark stack k2 at a
time

 Reduces fragmentation

4

Marking in concurrent system
 Concurrent system:

 Multiple processes or threads execute at the same time
and potentially interact with each other

 Collector locks mark stack while examining it

5

Termination of GC
 Mark phase completes when no grey object left in heap

 Dijkstra determines this by scanning for grey objects

 Restarts marking from any grey objects encountered

 Marking terminates when no grey object found

 Can marking and sweeping be pipelined?

 Quiennec says yes

 Use two color fields

 Start mark phase of collection cycle n+1 while sweeping in
cycle n

 Odd collections use one color field while even collections uses
the other

6

Concurrent reference counting
 Updating a RC must be atomic to avoid race conditions

between threads

 Can lead to premature collection of objects

 Atomicity requires locking shared objects

 Increases cost of pointer assignment

 Increase mutator performance

 Run collector in separate thread

 Make collector responsible for updating RC fields

 Mutators no longer update RC but log assignments in a
block of a transaction queue (figure on next slide)

7

Modula-2+ RC architecture

8

Jones and Lin: Diagram 8.7

Modula-2+ RC
 Mutator and collector communicates through a

transaction queue

 When current block is full (~ 16, 384 assignments) or
aout 40 KB of data allocated

 Mutator notifies collector

 Mutator gets new empty block

 Lock required to prevent simultaneous assignment to
same shared variable

9

Reducing RC cost
 Distinguish assignments to local variables from

assignments to global variables and heap data

 Only reference count shared-pointer-valued-variables

 RC is only lower bound of refs to object from local &
shared variables

10

Mutator code: shared references

11

update(A, C){

LOCK mutex

insert (A, C, tq) // insert in transaction queue

if(tq is full){

notify_collector(tq) // send block to collector

tq = gt_next_block()

}

*A = C

}

Modula-2+ RC algorithm
 TQ Block holds details up to some time t0

 Collector interrupts threads one at a time to scan its
state

 Collector locks mutex to stop a thread

 Any ref in thread’s state to heap object is saved for later
use

12

Modula-2+ RC algorithm
 All thread states scanned at time t1

 Collector adjust RC of pair of variables inserted in tq

 If RC == o, object added to Zero-Count-List (ZCL)

 Object deleted if shared RC== 0 at t0 and local RC == 0
and not on RHS of assignment

13

Collector code: shared references

14

collector(){

while (; ;){

tq = wait_next_block()

for each thread th {

LOCK mutex{

suspend(th)

scan_thread(th)

restart(th)

}

}

adjust_counts(tq)

free_block(tq)

adjust_shared_counts()

process_ZCL()

}

Processing ZCL
 If object’s shared RC no longer 0, it is removed from

ZCL

 If object is found in a thread state, it is left in ZCL

 It may be freed in future collection

 Otherwise object is removed from ZCL and recursively
freed

 Note: Can reduce cost of assignment

 Use per thread transaction queue

15

