
Iterative copying cheaper than recursive copying

Allocation in copying collector
init() {

to_space = Heap_bottom

space_size = Heap_size / 2

top_of_space = to_space + space_size

from_space = top_of_space + 1

free = to_space

}

new(n){

if (free + n > top_of_space) {flip()}

if (free + n > top_of_space) { abort “Memory exhausted”}

new_cell = free // allocate()

free = free + n

return new_cell

}
2

Flipping the spaces
flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

}

3

Copying for variable-sized objects
// P points to memory location, not an address

copy(P) {

if (atomic(P) or P == nil) return P // P is not a pointer

if not forwarded(P) // P stores a forwarding address after copied

n = size(P)

P´ = free // reserve space in to_space for copy of P

free = free + n

temp = P[0] // P[0] holds forwarding address

forwarding_address(P) = P´

P´[0] = copy(temp) // Restore P[0]

for i = 1 to i = n – 1 // Copy each field of P in to P´

P´[i] = copy(P[i])

return forwarding_address(P) // Stored in P[0]

}
4

Basic copying collector
 Uses recursive call to copy

 Recursive calls costs CPU time

 Recursion stack occupies precious space

 Alternative:

 Cheney’s iterative copying collector

 Just 2 pointers are needed: scan and free

 Remember branch points of active graph as a queue

 scan and free point to opposite ends of queue

 Stored in new semi-space in objects already copied

 Use tricolor abstraction

5

Cheney’s copying collector
 Immediately reachable objects form initial queue of

objects for a breadth-first traversal

 scan pointer is advanced from first object location to
end of scanned objects.

 Each encounter of pointer into from-space, pointee is
copied to the end of the queue (in to-space) and the
pointer to the object is updated

6

Cheney’s copying collector
 When an object is copied to to-space, a forwarding

pointer is installed in the old version of the object

 The forwarding pointer signifies that the old version of
object is obsolete and indicates where to find replica

7

Cheney’s tricolor abstraction
 Black:

 Object scanned--object & immediate descendents visited

 GC finished with black objects, will not visit them again

 Grey:

 Object is visited but its descendents may not have been
scanned

 Collector must visit it again

 White

 Object not visited and is garbage at end of tracing phase

8

Cheney’s algorithm after the flip

9

From-space To-space

A

B C

D E F G

scan
free

Roots of structure copied

10

A´

From-space To-space

A

B C

D E F G

scan

free

A´

A´ scanned, copying B and C

11

A´

From-space

C´

To-space

A

B CB´

D E F G

scan

free

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´

All from-space objects copied

12

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´ D´ E´

F´ G´

left(F) updated

13

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´ D´ E´

F´ G´

Algorithm terminates

14

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´ B´ C´ D´ E´

F´ G´

Cheney’s algorithm

15

flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

scan = free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

while scan < free

for P in children(scan)

*P = copy(*P)

scan = scan + size(scan)

}

Cheney’s algorithm

16

copy() {

if forwarded(P)

return forwarding_address(P)

else

addr = free

move(P free)

free = free + size(P)

forwarding_address(P) = addr

return addr

}

Multiple-area collection
 Problem:

 CPU cost of scavenging depends in part on size of
objects

 Copying small objects no more expensive than marking with
bitmap

 Cost of copying large objects may be prohibitive

 Typically contains bitmaps and strings (atomic)

 Solution:

 Use large object space (separate memory region)

 Assume objects have header and body

 Keep header in semi-space

 Keep body in large object space (use mark-sweep) 17

Multiple-area collection
 Problem:

 Some objects may have some permanence

 Repeatedly copying such objects is wasteful

 Solution:

 Use separate static area

 Do not garbage collect such region

 Trace region for pointers to heap object outside static
area

 Preview for generational garbage collection

18

Incrementally compacting collector
 Divide heap into multiple separately managed regions

 Allows compacting of parts of the heap

 Use mark-sweep or other approach on other regions

 Lang and Dupont:

 Divide heap into n + 1 equally sized segments

 At each GC cycle:

 Choose 2 regions for copying GC

 Mark-sweep other regions

 Rotate regions used for copying GC

 Collector chooses which transition to take next

 Give preference to mark-sweep to limit growth of stack
19

Effects of incremental compactor
 Compact small fragments into single piece

 Compactor will pass through every segment of the
heap in n collection cycle

 Small cost: extra segment used for a semi-space

20

