
Iterative copying cheaper than recursive copying

Allocation in copying collector
init() {

to_space = Heap_bottom

space_size = Heap_size / 2

top_of_space = to_space + space_size

from_space = top_of_space + 1

free = to_space

}

new(n){

if (free + n > top_of_space) {flip()}

if (free + n > top_of_space) { abort “Memory exhausted”}

new_cell = free // allocate()

free = free + n

return new_cell

}
2

Flipping the spaces
flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

}

3

Copying for variable-sized objects
// P points to memory location, not an address

copy(P) {

if (atomic(P) or P == nil) return P // P is not a pointer

if not forwarded(P) // P stores a forwarding address after copied

n = size(P)

P´ = free // reserve space in to_space for copy of P

free = free + n

temp = P[0] // P[0] holds forwarding address

forwarding_address(P) = P´

P´[0] = copy(temp) // Restore P[0]

for i = 1 to i = n – 1 // Copy each field of P in to P´

P´[i] = copy(P[i])

return forwarding_address(P) // Stored in P[0]

}
4

Basic copying collector
 Uses recursive call to copy

 Recursive calls costs CPU time

 Recursion stack occupies precious space

 Alternative:

 Cheney’s iterative copying collector

 Just 2 pointers are needed: scan and free

 Remember branch points of active graph as a queue

 scan and free point to opposite ends of queue

 Stored in new semi-space in objects already copied

 Use tricolor abstraction

5

Cheney’s copying collector
 Immediately reachable objects form initial queue of

objects for a breadth-first traversal

 scan pointer is advanced from first object location to
end of scanned objects.

 Each encounter of pointer into from-space, pointee is
copied to the end of the queue (in to-space) and the
pointer to the object is updated

6

Cheney’s copying collector
 When an object is copied to to-space, a forwarding

pointer is installed in the old version of the object

 The forwarding pointer signifies that the old version of
object is obsolete and indicates where to find replica

7

Cheney’s tricolor abstraction
 Black:

 Object scanned--object & immediate descendents visited

 GC finished with black objects, will not visit them again

 Grey:

 Object is visited but its descendents may not have been
scanned

 Collector must visit it again

 White

 Object not visited and is garbage at end of tracing phase

8

Cheney’s algorithm after the flip

9

From-space To-space

A

B C

D E F G

scan
free

Roots of structure copied

10

A´

From-space To-space

A

B C

D E F G

scan

free

A´

A´ scanned, copying B and C

11

A´

From-space

C´

To-space

A

B CB´

D E F G

scan

free

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´

All from-space objects copied

12

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´ D´ E´

F´ G´

left(F) updated

13

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´

Black nodes have been scanned; grey nodes copied but not scanned

B´ C´ D´ E´

F´ G´

Algorithm terminates

14

A´

From-space

C´

To-space

A

B CB´

E´

D E

D´ G´F´

F G

free

scan

A´ B´ C´ D´ E´

F´ G´

Cheney’s algorithm

15

flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

scan = free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

while scan < free

for P in children(scan)

*P = copy(*P)

scan = scan + size(scan)

}

Cheney’s algorithm

16

copy() {

if forwarded(P)

return forwarding_address(P)

else

addr = free

move(P free)

free = free + size(P)

forwarding_address(P) = addr

return addr

}

Multiple-area collection
 Problem:

 CPU cost of scavenging depends in part on size of
objects

 Copying small objects no more expensive than marking with
bitmap

 Cost of copying large objects may be prohibitive

 Typically contains bitmaps and strings (atomic)

 Solution:

 Use large object space (separate memory region)

 Assume objects have header and body

 Keep header in semi-space

 Keep body in large object space (use mark-sweep) 17

Multiple-area collection
 Problem:

 Some objects may have some permanence

 Repeatedly copying such objects is wasteful

 Solution:

 Use separate static area

 Do not garbage collect such region

 Trace region for pointers to heap object outside static
area

 Preview for generational garbage collection

18

Incrementally compacting collector
 Divide heap into multiple separately managed regions

 Allows compacting of parts of the heap

 Use mark-sweep or other approach on other regions

 Lang and Dupont:

 Divide heap into n + 1 equally sized segments

 At each GC cycle:

 Choose 2 regions for copying GC

 Mark-sweep other regions

 Rotate regions used for copying GC

 Collector chooses which transition to take next

 Give preference to mark-sweep to limit growth of stack
19

Effects of incremental compactor
 Compact small fragments into single piece

 Compactor will pass through every segment of the
heap in n collection cycle

 Small cost: extra segment used for a semi-space

20

