
A modified form of Cheney’s Algorithm to allow
mutator to progress during a GC cycle

Main idea of Baker’s algorithm
 Don’t let the mutator see a white object

 Cannot disrupt collect

 During collection each mutator read from from_space
is trapped by read-barrier

 It is copied to to_space

 It is colored grey (or black)

 Address of copy returned to mutator

 Writes are not affected

2

Best known read-barrier collector

3

Tospace

TBscan

new

allocations

copied

objects
topbottom

 Allocation occurs at top of to_space

to_space

Issues to resolve
 Should mutator be allowed to read grey objects as well

as black objects?

 How much work should read-barrier be allowed to do?

 least amount of work:

 Evacuate from_space object into to-space

 Tricolor abstraction:

 Color white objects grey

 Return address of grey object to mutator

4

Issues to resolve
 Should mutator be allowed to read grey objects as well

as black objects?

 How much work should read-barrier be allowed to do?

 Black only read-barrier:

 Copy and scan object

 Potentially blacken other grey objects

 Return address of black object to mutator

5

Advantages and disadvantages
 Advantages:

 Collect does not need to scan new objects

 Could not have been initialized with refs to from_space

 Disadvantages:

 No new objects can be reclaimed until next cycle

 Read-barrier is more conservative than incremental-
update write-barrier approaches

6

Baker’s incremental copying alg

7

new(n){

if (B ≥ T – n){ // flip phase

if (scan < B) abort “Have not finished scavenging”

flip()

for (R in roots) { R = copy(R)} // Not RT

}

repeat k times while (scan < B) {

for (P in children(scan)) {*P = copy(P)}

scan = scan + size(scan)

}

if (B == T) abort “heap full”

T = T –n

return T

}

Baker’s incremental copying alg

8

read(T){

T´ = copy(T)}

return T´

}

 Evacuates a single object at a time

Copying for variable-sized objects
// P points to memory location, not an address

copy(P) {

if (atomic(P) or P == nil) return P // P is not a pointer

if not forwarded(P) // P stores a forwarding address after copied

n = size(P)

P´ = free // reserve space in to_space for copy of P

free = free + n

temp = P[0] // P[0] holds forwarding address

forwarding_address(P) = P´

P´[0] = copy(temp) // Restore P[0]

for i = 1 to i = n – 1 // Copy each field of P in to P´

P´[i] = copy(P[i])

return forwarding_address(P) // Stored in P[0]

}
9

Flipping Routine from Cheney’s alg
flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

}

In Baker’s algorithm, copying of root objects not done as part of flip routine

10

Flipping semi-spaces
 Flipping when pointers meet (B & T)

 Minimizes amount of copying by allowing objects
enough time to die

 Maximizes amount of heap allocated

 Maximizes number of page faults

 Flipping as soon as collection cycle is completed

 Compacts data using fewer pages

 Reduces chance of page faults

 Flipping also checks that to_space is large enough

 K objects scanned at each allocation
11

Limitations on Baker’s algorithm
 Latency:

 Root set must be scavenged atomically at flip time

 Difficult to provide small upper bound on new() if root
set is large

 Cost of evacuating an object depends on its size

 Solution: use backward link to lazily copy and scan large
objects

 Time to access an object depends on whether it is in
to_space or from_space

 Performance of read-barrier is less predictable than
write-barrier

12

Variations on Baker’s algorithm
 Most sought to either

 Reduce cost of barrier, or

 Make length of pause more predictable

13

Brooks variation
 Reduce cost of read-barrier

 Eliminate conditional check and branch that
determines whether an object should be forwarded

 Instead, all objects are referred to via indirection field
in header

 If object has been coped
indirection field refers to to_space copy

 If object has not been copied
indirection field refers to from_space copy

 To prevent installation of black-white pointers update
method is required to forward 2nd argument

14

Brook’s forwarding pointers

15

Jones and Lin: Diagram 8.10

Brooks approach
 Is actually an incremental-update write-barrier instead

of a read-barrier

 Adds space overhead for forwarding pointer

 Time overhead due to indirection

 Balanced by lower frequency of write-barrier

16

