
A modified form of Cheney’s Algorithm to allow
mutator to progress during a GC cycle

Main idea of Baker’s algorithm
 Don’t let the mutator see a white object

 Cannot disrupt collect

 During collection each mutator read from from_space
is trapped by read-barrier

 It is copied to to_space

 It is colored grey (or black)

 Address of copy returned to mutator

 Writes are not affected

2

Best known read-barrier collector

3

Tospace

TBscan

new

allocations

copied

objects
topbottom

 Allocation occurs at top of to_space

to_space

Issues to resolve
 Should mutator be allowed to read grey objects as well

as black objects?

 How much work should read-barrier be allowed to do?

 least amount of work:

 Evacuate from_space object into to-space

 Tricolor abstraction:

 Color white objects grey

 Return address of grey object to mutator

4

Issues to resolve
 Should mutator be allowed to read grey objects as well

as black objects?

 How much work should read-barrier be allowed to do?

 Black only read-barrier:

 Copy and scan object

 Potentially blacken other grey objects

 Return address of black object to mutator

5

Advantages and disadvantages
 Advantages:

 Collect does not need to scan new objects

 Could not have been initialized with refs to from_space

 Disadvantages:

 No new objects can be reclaimed until next cycle

 Read-barrier is more conservative than incremental-
update write-barrier approaches

6

Baker’s incremental copying alg

7

new(n){

if (B ≥ T – n){ // flip phase

if (scan < B) abort “Have not finished scavenging”

flip()

for (R in roots) { R = copy(R)} // Not RT

}

repeat k times while (scan < B) {

for (P in children(scan)) {*P = copy(P)}

scan = scan + size(scan)

}

if (B == T) abort “heap full”

T = T –n

return T

}

Baker’s incremental copying alg

8

read(T){

T´ = copy(T)}

return T´

}

 Evacuates a single object at a time

Copying for variable-sized objects
// P points to memory location, not an address

copy(P) {

if (atomic(P) or P == nil) return P // P is not a pointer

if not forwarded(P) // P stores a forwarding address after copied

n = size(P)

P´ = free // reserve space in to_space for copy of P

free = free + n

temp = P[0] // P[0] holds forwarding address

forwarding_address(P) = P´

P´[0] = copy(temp) // Restore P[0]

for i = 1 to i = n – 1 // Copy each field of P in to P´

P´[i] = copy(P[i])

return forwarding_address(P) // Stored in P[0]

}
9

Flipping Routine from Cheney’s alg
flip() {

to_space, from_space = from_space, to_space

top_of_space = to_space + space_size

free = to_space

for R in Roots

R = copy(R) // Root pointer now points to copy of R

}

In Baker’s algorithm, copying of root objects not done as part of flip routine

10

Flipping semi-spaces
 Flipping when pointers meet (B & T)

 Minimizes amount of copying by allowing objects
enough time to die

 Maximizes amount of heap allocated

 Maximizes number of page faults

 Flipping as soon as collection cycle is completed

 Compacts data using fewer pages

 Reduces chance of page faults

 Flipping also checks that to_space is large enough

 K objects scanned at each allocation
11

Limitations on Baker’s algorithm
 Latency:

 Root set must be scavenged atomically at flip time

 Difficult to provide small upper bound on new() if root
set is large

 Cost of evacuating an object depends on its size

 Solution: use backward link to lazily copy and scan large
objects

 Time to access an object depends on whether it is in
to_space or from_space

 Performance of read-barrier is less predictable than
write-barrier

12

Variations on Baker’s algorithm
 Most sought to either

 Reduce cost of barrier, or

 Make length of pause more predictable

13

Brooks variation
 Reduce cost of read-barrier

 Eliminate conditional check and branch that
determines whether an object should be forwarded

 Instead, all objects are referred to via indirection field
in header

 If object has been coped
indirection field refers to to_space copy

 If object has not been copied
indirection field refers to from_space copy

 To prevent installation of black-white pointers update
method is required to forward 2nd argument

14

Brook’s forwarding pointers

15

Jones and Lin: Diagram 8.10

Brooks approach
 Is actually an incremental-update write-barrier instead

of a read-barrier

 Adds space overhead for forwarding pointer

 Time overhead due to indirection

 Balanced by lower frequency of write-barrier

16

