


Advantages of RCGC

simple to implement
Identify garbage as object dies
e Immediate reuse of storage
Good spatial locality of reference
e Only objects in pointer reference need to be accessed

Does not require additional heap storage to prevent
GC from croaking

Time overhead distributed throughout computation



Advantages of RCGC

* Adopted in several systems
e Unix utilities awk and perl,
e Unix file systems,
e Memory managemet in distributed systems

« Reduced communication overhead due to good locality of
reference



— e e

e

Deficiencies of RCGC

Cost of removing last pointer unbounded

Total overhead of adjusting RCs significantly greater
than that of tracing collectors

Substantial space overhead
Inability to reclaim cyclic data structures



How do we overcome shortcomings?

* Problem
e Cost of removing last pointer unbounded

» Depends on size of sub-graph rooted at garbage object
* Solution
e Non-recursive freeing

e Weizenbaum: when last pointer to objet Q is deleted,
simply push Q unto free-stack
» Use free-list as a stack
« RC field used to chain stack
» Lazy deletion (update() unchanged)



Reference counting example

Root set
Heap space




Reference counting example

Root set
Heap space

o—




Reference counting example

Root set Heap space




Reference counting example

Root set Heap space

o—




Weizenbaum’s Algorithm

new() {

if freeList == NULL

abort “Memory exhausted”

newcell = allocate() // pop stack
for N in Children(newcell)

delete(*N)

RC(newcell) =1

return newcell

delete(N){
if RC(N) ==1
free(N)
else decrementRC(N)

free(N){
RC(N) = freeList // RC replace next
freeList = N

} // push n unto the stack

10



Updating pointers

update(R, S){
incrementRC(S)
delete(*R)
*R—35

11



Effects of Weizenbaum’s Algorithm

Less vulnerable to delays caused by cascading deletion

If array is freed, all its pointers must still be deleted
before its storage can be reused

e May/not be noticeable
Loses some benetfits of immediacy

e Memory inaccessible until data structure popped from
stack

» See new()

12



How do we overcome shortcomings?

Problem

e Total overhead of adjusting RCs significantly
greater than that of tracing collectors

« Overhead of maintain RC high on conventional hardware
Fetching counts may invalidate cache lines
Pages containing remote data may be paged in
» ~dozen instructions to adjust RC in both old & new pointees
« What about iterating over a list?

Solution

e Deferred reference counting
 Allow as few RC updates as possible
« Deutsch-Bobrow Algorithm 13



Deutsch-Bobrow Algorithm

e Observation

e Majority of pointer writes are made in local variables
e Frequency of other pointer stores may be as low as 1%
» True with modern optimizing compilers
» Deferred RC takes advantage of observation
e Don'’t count references from local variables or stack

» Use simple assignment

e Only count references from heap objects

14



Implications of Deutsch-Bobrow

Object no longer reclaimed as soon as it RC drops to o
e What about references from stack?

Objects with zero RC added to zero-count-table
(ZCT) by delete()
Periodically ZCT is reconciled

e To remove and collect garbage

Note: possible for other heap objects to store
references to entries in ZCT
e Increment RC of entry

e Remove entry from ZCT

15



Deutsch-Bobrow Algorithm

delete(N) {
decrementRC(N)
if RC(N) == o
add N to ZCT

update(R, S){
incrementRC(S)
delete(*R)

remove S from ZCT
*R=S§

/* Three phase reconciliation */
reconcile(){
for P in stack // mark the stack
incrementRC(*P)
for N in ZCT // reclaim garbage
if RC(N) == o
for M in children(N)
delete(*M)
free(N)
for P in stack S // unmark the stack
decrementRC(*P)

16



Advantages of deferred RC

* Very effective at reducing cost of pointer writes

* Experience with Smalltalk implementation on Xerox
Dorado in mid-eighties

e Cut the cost of pointer manipulation by 8o %
e Add small space overhead

e Immediate vs deferred RC. [Ungar, 1984]

S immediate | Deferred

Updates 15 3
Reconciliation 3
Recursive freeing 5 5

Total 20 11

17



Disadvantages of deferred RC

Space overhead for ZCT
ZCT can overflow
Reduces RC advantage of immediacy

18



How do we overcome shortcomings?

Problem

e Substantial space overhead
» Requires space in each object to store RC

« Worst case: field large enough to hold total # of pointers

In heap and root set
Solution

e In practice objects don’t have that many references

- Typically each object receives just a few references at a time

e Save space by using smaller RC field

 Limited-field reference counting

19



/ e
Sticky reference counts

The RC of an object cannot be allowed to exceed its
maximum possible value

e Its sticky RC
Once a RC reaches this value, it is stuck

[t cannot be reduced since its true RC can be greater
than its sticky RC

[t cannot be increased since it is limited by the size of
the RC field

20



Adjusting sticky reference counts

incrementRC(N) { decrementRC(N){
if RC(N) < sticky if RC(N) < sticky
RC(N) = RC(N) +1 RC(N) = RC(N) -1

21



/X/

Restoring reference counts

* Why is this necessary?

e An object cannot be reclaimed by RCGC once its RC
reaches sticky

e RC needs to be restored

e Can use tracing collector
 Can collect cycles

22



/X/

Tracing collection restores RC

mark_sweep () { mark(N){
for N in Heap incrementRC(N)
RC(N) =0 if RC(N) ==1
for R in Roots for M in children(N)
mark(*R) mark(*M)
sweep() }

if free_pool is empty
abort “Memory exhausted”

23



Other RC Optimizations

* One-bit reference counting
e Unique pointer vs shared pointer
* Using an ‘Ought to be two’ cache
e A version of the one-bit RC
* Hardware reference counting

e With other optimizations RC still more costly than
tracing collectors

e Need specialize hardware
» Self-managing heap memory based on RC
» Have not been successful commercially

24



