
RCGC can be more attractive

Advantages of RCGC
 simple to implement

 Identify garbage as object dies

 Immediate reuse of storage

 Good spatial locality of reference

 Only objects in pointer reference need to be accessed

 Does not require additional heap storage to prevent
GC from croaking

 Time overhead distributed throughout computation

2

Advantages of RCGC
 Adopted in several systems

 Unix utilities awk and perl,

 Unix file systems,

 Memory managemet in distributed systems

 Reduced communication overhead due to good locality of
reference

3

Deficiencies of RCGC
 Cost of removing last pointer unbounded

 Total overhead of adjusting RCs significantly greater
than that of tracing collectors

 Substantial space overhead

 Inability to reclaim cyclic data structures

4

How do we overcome shortcomings?
 Problem

 Cost of removing last pointer unbounded

 Depends on size of sub-graph rooted at garbage object

 Solution

 Non-recursive freeing

 Weizenbaum: when last pointer to objet Q is deleted,
simply push Q unto free-stack

 Use free-list as a stack

 RC field used to chain stack

 Lazy deletion (update() unchanged)

5

Reference counting example

6

Root set
Heap space

1

111

1 1

2

2

1

Reference counting example

7

Root set
Heap space

1

101

1 1

2

2

1

Reference counting example

8

Root set
Heap space

1

101

1 0

2

1

1

Reference counting example

9

Root set
Heap space

1

11

1

2

1

1

Weizenbaum’s Algorithm
new() {

if freeList == NULL

abort “Memory exhausted”

newcell = allocate() // pop stack

for N in Children(newcell)

delete(*N)

RC(newcell) = 1

return newcell

}

10

delete(N){

if RC(N) == 1

free(N)

else decrementRC(N)

}

free(N){

RC(N) = freeList // RC replace next

freeList = N

} // push n unto the stack

Updating pointers

11

update(R, S){

incrementRC(S)

delete(*R)

*R = S

}

Effects of Weizenbaum’s Algorithm
 Less vulnerable to delays caused by cascading deletion

 If array is freed, all its pointers must still be deleted
before its storage can be reused

 May/not be noticeable

 Loses some benefits of immediacy

 Memory inaccessible until data structure popped from
stack

 See new()

12

How do we overcome shortcomings?
 Problem

 Total overhead of adjusting RCs significantly
greater than that of tracing collectors

 Overhead of maintain RC high on conventional hardware

 Fetching counts may invalidate cache lines

 Pages containing remote data may be paged in

 ~ dozen instructions to adjust RC in both old & new pointees

 What about iterating over a list?

 Solution

 Deferred reference counting

 Allow as few RC updates as possible

 Deutsch-Bobrow Algorithm 13

Deutsch-Bobrow Algorithm
 Observation

 Majority of pointer writes are made in local variables

 Frequency of other pointer stores may be as low as 1%

 True with modern optimizing compilers

 Deferred RC takes advantage of observation

 Don’t count references from local variables or stack

 Use simple assignment

 Only count references from heap objects

14

Implications of Deutsch-Bobrow
 Object no longer reclaimed as soon as it RC drops to 0

 What about references from stack?

 Objects with zero RC added to zero-count-table
(ZCT) by delete()

 Periodically ZCT is reconciled

 To remove and collect garbage

 Note: possible for other heap objects to store
references to entries in ZCT

 Increment RC of entry

 Remove entry from ZCT

15

Deutsch-Bobrow Algorithm
delete(N) {

decrementRC(N)

if RC(N) == 0

add N to ZCT

}

update(R, S){

incrementRC(S)

delete(*R)

remove S from ZCT

*R = S

}

16

/* Three phase reconciliation */

reconcile(){

for P in stack // mark the stack

incrementRC(*P)

for N in ZCT // reclaim garbage

if RC(N) == 0

for M in children(N)

delete(*M)

free(N)

for P in stack S // unmark the stack

decrementRC(*P)

}

Advantages of deferred RC
 Very effective at reducing cost of pointer writes

 Experience with Smalltalk implementation on Xerox
Dorado in mid-eighties

 Cut the cost of pointer manipulation by 80 %

 Add small space overhead

 Immediate vs deferred RC. [Ungar, 1984]

17

Immediate Deferred

Updates 15 3

Reconciliation 3

Recursive freeing 5 5

Total 20 11

Disadvantages of deferred RC
 Space overhead for ZCT

 ZCT can overflow

 Reduces RC advantage of immediacy

18

How do we overcome shortcomings?
 Problem

 Substantial space overhead

 Requires space in each object to store RC

 Worst case: field large enough to hold total # of pointers

 In heap and root set

 Solution

 In practice objects don’t have that many references

 Typically each object receives just a few references at a time

 Save space by using smaller RC field

 Limited-field reference counting

19

Sticky reference counts
 The RC of an object cannot be allowed to exceed its

maximum possible value

 Its sticky RC

 Once a RC reaches this value, it is stuck

 It cannot be reduced since its true RC can be greater
than its sticky RC

 It cannot be increased since it is limited by the size of
the RC field

20

Adjusting sticky reference counts

incrementRC(N) {

if RC(N) < sticky

RC(N) = RC(N) + 1

}

21

decrementRC(N){

if RC(N) < sticky

RC(N) = RC(N) – 1

}

Restoring reference counts
 Why is this necessary?

 An object cannot be reclaimed by RCGC once its RC
reaches sticky

 RC needs to be restored

 Can use tracing collector

 Can collect cycles

22

Tracing collection restores RC

23

mark_sweep () {

for N in Heap

RC(N) = 0

for R in Roots

mark(*R)

sweep()

if free_pool is empty

abort “Memory exhausted”

}

mark(N){

incrementRC(N)

if RC(N) == 1

for M in children(N)

mark(*M)

}

Other RC Optimizations
 One-bit reference counting

 Unique pointer vs shared pointer

 Using an ‘Ought to be two’ cache

 A version of the one-bit RC

 Hardware reference counting

 With other optimizations RC still more costly than
tracing collectors

 Need specialize hardware

 Self-managing heap memory based on RC

 Have not been successful commercially

24

