
RCGC can be more attractive

Advantages of RCGC
 simple to implement

 Identify garbage as object dies

 Immediate reuse of storage

 Good spatial locality of reference

 Only objects in pointer reference need to be accessed

 Does not require additional heap storage to prevent
GC from croaking

 Time overhead distributed throughout computation

2

Advantages of RCGC
 Adopted in several systems

 Unix utilities awk and perl,

 Unix file systems,

 Memory managemet in distributed systems

 Reduced communication overhead due to good locality of
reference

3

Deficiencies of RCGC
 Cost of removing last pointer unbounded

 Total overhead of adjusting RCs significantly greater
than that of tracing collectors

 Substantial space overhead

 Inability to reclaim cyclic data structures

4

How do we overcome shortcomings?
 Problem

 Cost of removing last pointer unbounded

 Depends on size of sub-graph rooted at garbage object

 Solution

 Non-recursive freeing

 Weizenbaum: when last pointer to objet Q is deleted,
simply push Q unto free-stack

 Use free-list as a stack

 RC field used to chain stack

 Lazy deletion (update() unchanged)

5

Reference counting example

6

Root set
Heap space

1

111

1 1

2

2

1

Reference counting example

7

Root set
Heap space

1

101

1 1

2

2

1

Reference counting example

8

Root set
Heap space

1

101

1 0

2

1

1

Reference counting example

9

Root set
Heap space

1

11

1

2

1

1

Weizenbaum’s Algorithm
new() {

if freeList == NULL

abort “Memory exhausted”

newcell = allocate() // pop stack

for N in Children(newcell)

delete(*N)

RC(newcell) = 1

return newcell

}

10

delete(N){

if RC(N) == 1

free(N)

else decrementRC(N)

}

free(N){

RC(N) = freeList // RC replace next

freeList = N

} // push n unto the stack

Updating pointers

11

update(R, S){

incrementRC(S)

delete(*R)

*R = S

}

Effects of Weizenbaum’s Algorithm
 Less vulnerable to delays caused by cascading deletion

 If array is freed, all its pointers must still be deleted
before its storage can be reused

 May/not be noticeable

 Loses some benefits of immediacy

 Memory inaccessible until data structure popped from
stack

 See new()

12

How do we overcome shortcomings?
 Problem

 Total overhead of adjusting RCs significantly
greater than that of tracing collectors

 Overhead of maintain RC high on conventional hardware

 Fetching counts may invalidate cache lines

 Pages containing remote data may be paged in

 ~ dozen instructions to adjust RC in both old & new pointees

 What about iterating over a list?

 Solution

 Deferred reference counting

 Allow as few RC updates as possible

 Deutsch-Bobrow Algorithm 13

Deutsch-Bobrow Algorithm
 Observation

 Majority of pointer writes are made in local variables

 Frequency of other pointer stores may be as low as 1%

 True with modern optimizing compilers

 Deferred RC takes advantage of observation

 Don’t count references from local variables or stack

 Use simple assignment

 Only count references from heap objects

14

Implications of Deutsch-Bobrow
 Object no longer reclaimed as soon as it RC drops to 0

 What about references from stack?

 Objects with zero RC added to zero-count-table
(ZCT) by delete()

 Periodically ZCT is reconciled

 To remove and collect garbage

 Note: possible for other heap objects to store
references to entries in ZCT

 Increment RC of entry

 Remove entry from ZCT

15

Deutsch-Bobrow Algorithm
delete(N) {

decrementRC(N)

if RC(N) == 0

add N to ZCT

}

update(R, S){

incrementRC(S)

delete(*R)

remove S from ZCT

*R = S

}

16

/* Three phase reconciliation */

reconcile(){

for P in stack // mark the stack

incrementRC(*P)

for N in ZCT // reclaim garbage

if RC(N) == 0

for M in children(N)

delete(*M)

free(N)

for P in stack S // unmark the stack

decrementRC(*P)

}

Advantages of deferred RC
 Very effective at reducing cost of pointer writes

 Experience with Smalltalk implementation on Xerox
Dorado in mid-eighties

 Cut the cost of pointer manipulation by 80 %

 Add small space overhead

 Immediate vs deferred RC. [Ungar, 1984]

17

Immediate Deferred

Updates 15 3

Reconciliation 3

Recursive freeing 5 5

Total 20 11

Disadvantages of deferred RC
 Space overhead for ZCT

 ZCT can overflow

 Reduces RC advantage of immediacy

18

How do we overcome shortcomings?
 Problem

 Substantial space overhead

 Requires space in each object to store RC

 Worst case: field large enough to hold total # of pointers

 In heap and root set

 Solution

 In practice objects don’t have that many references

 Typically each object receives just a few references at a time

 Save space by using smaller RC field

 Limited-field reference counting

19

Sticky reference counts
 The RC of an object cannot be allowed to exceed its

maximum possible value

 Its sticky RC

 Once a RC reaches this value, it is stuck

 It cannot be reduced since its true RC can be greater
than its sticky RC

 It cannot be increased since it is limited by the size of
the RC field

20

Adjusting sticky reference counts

incrementRC(N) {

if RC(N) < sticky

RC(N) = RC(N) + 1

}

21

decrementRC(N){

if RC(N) < sticky

RC(N) = RC(N) – 1

}

Restoring reference counts
 Why is this necessary?

 An object cannot be reclaimed by RCGC once its RC
reaches sticky

 RC needs to be restored

 Can use tracing collector

 Can collect cycles

22

Tracing collection restores RC

23

mark_sweep () {

for N in Heap

RC(N) = 0

for R in Roots

mark(*R)

sweep()

if free_pool is empty

abort “Memory exhausted”

}

mark(N){

incrementRC(N)

if RC(N) == 1

for M in children(N)

mark(*M)

}

Other RC Optimizations
 One-bit reference counting

 Unique pointer vs shared pointer

 Using an ‘Ought to be two’ cache

 A version of the one-bit RC

 Hardware reference counting

 With other optimizations RC still more costly than
tracing collectors

 Need specialize hardware

 Self-managing heap memory based on RC

 Have not been successful commercially

24

