
Ideal strategy follows program execution behaviors



Multiple-area collection
 Problem:

 CPU cost of scavenging depends in part on size of 
objects

 Copying small objects no more expensive than marking with 
bitmap

 Cost of copying large objects may be prohibitive

 Typically contains bitmaps and strings (atomic)

 Solution:

 Use large object space (separate memory region)

 Assume objects have header and body

 Keep header in semi-space

 Keep body in large object space (use mark-sweep) 2



Multiple-area collection
 Problem:

 Some objects may have some permanence

 Repeatedly copying such objects is wasteful

 Solution:

 Use separate static area

 Do not garbage collect such region

 Trace region for pointers to heap object outside static 
area

 Preview for generational garbage collection
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Incrementally compacting collector
 Divide heap into multiple separately managed regions

 Allows compacting of parts of the heap

 Use mark-sweep or other approach on other regions

 Lang and Dupont:

 Divide heap into n + 1 equally sized segments

 At each GC cycle:

 Choose 2 regions for copying GC

 Mark-sweep other regions

 Rotate regions used for copying GC

 Collector chooses which transition to take next

 Give preference to mark-sweep to limit growth of stack
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Effects of incremental compactor
 Compact small fragments into single piece

 Compactor will pass through every segment of the 
heap in n collection cycle

 Small cost:  extra segment used for a semi-space
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How efficient is Cheney’s alg.?
 Suppose:

 M size of each semi-space

 R  number of reachable object

 s  average size of each object

 Then:

 # objects allocated between GC cycles: = M/s – R

 If R = k, M/s – R = # objects reclaimed in each GC cycle
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How efficient is Cheney’s alg.?
 Suppose:

 g  CPU cost of GC per object reclaimed

 Then:

 g can be made arbitrary small by increasing M

 Increasing heap size reduces GC time

 See Jones and Lins, page 129
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Garbage Collection locality issues
 Spatial locality: if a memory location is referenced at a 

particular time, then it is likely that its neighbors will 
be referenced in the near future

 Reasons for locality

 Predictability:  

 one type of behavior in compute systems

 Program structure: 

 related data stored in nearby locations. 

 Easy to access next item

 Linear data structure:

 code contains loops that tend to reference arrays or other data 
structures by indices 8



Garbage Collection locality issues
 On virtual memory systems:

 Cost of page fault is expensive

 Tens of thousands or

 Millions of CPU cycles

 Additional CPU cycles to minimize page faults are 
worthwhile
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Garbage Collection locality issues
 Two spatial locality issues relevant here

 MM system will touch every page in to-space

 MM  allocator + garbage collector

 Increasing heap size increases number of pages touched

 Copying GC reorganizes the layout of objects in the 
heap

 Will impact spatial locality of heap data structures 

 May compromise mutator’s working set 
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Increase heap size reduces GC time
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Paging behavior: MSGC vs Copying
 Sophisticated MS

 Use stack or bitmap for mark-phase

 Mark phase does not touch/dirty heap pages

 Lazy sweeping does not affect paging behavior

 Linked into free list and will soon be reallocated

 Copying GC

 Next page to be allocated is likely the one LRU

 LRU is a virtual memory page replacement policy

 If set of pages in memory too small to hold both semi-
spaces

 To-space pages evicted before used for allocation
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Paging behavior: MSGC vs Copying
 Zorn compared paging behavior of collectors

 Conclusions:

 Virtual memory behavior of mark-sweep GC noticeably 
better than that of copying
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Regrouping strategies
 Desire for relationship between data be reflected by 

their layout in heap

 More closely data are related the closer they should be 
placed in heap

 Relations may be 

 Structural: objects are part of same data structure

 Temporal: objects accessed by mutator at similar times

 Placing related data on same page reduces page 
trafficking since bring data in memory also brings 
neighboring data
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Regrouping strategies
 Objects typically created and destroyed in clusters

 Initial layout of objects in memory reflects future 
access patterns by user program

 Problem:

 Copying objects may rearrange their order or layout in 
the heap

 The way live objects are regrouped depends on the order 
that live graph is traversed.
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Depth and breadth first copying
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Regrouping strategies
 Can use regrouping strategies to improve locality

 Static regrouping

 Analyze topology of heap data at collection time.  

 Move structurally related objects more closely

 Dynamic regrouping

 Cluster objects based on mutator access pattern

 Objects regrouped on-the-fly by incremental copying 
collector

 Depth first copying generally yields better locality than 
breadth-first copying
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Copying vs Mark-sweep
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L = volume live data in heap

R = residency of user program

M = heap size

Method/Cost Mark-sweep Copying

Initialisation clear mark-bits flip semi-space

Cost negligible negligible

Tracing mark objects copy objects

Cost O(L) O(L)

Sweeping lazily: transferred to allocation none

Cost

Allocation lazily: dominated by init done directly

Cost O(M - R) O(M - R)

• Different constants of proportionality

• Object size is important, especially for copying

• Sophisticated copying collector easier to implement


