ﬁ
V

Multiple-area collection,
Regrouping strategies

Ideal strate tion behaviors

Multiple-area collection

* Problem:
e CPU cost of scavenging depends in part on size of
objects

» Copying small objects no more expensive than marking with
bitmap

» Cost of copying large objects may be prohibitive
- Typically contains bitmaps and strings (atomic)
* Solution:
e Use large object space (separate memory region)

e Assume objects have header and body
» Keep header in semi-space
 Keep body in large object space (use mark-sweep) 2

/X/

Multiple-area collection

* Problem:

e Some objects may have some permanence

e Repeatedly copying such objects is wasteful
* Solution:

e Use separate static area

e Do not garbage collect such region

e Trace region for pointers to heap object outside static
area

* Preview for generational garbage collection

Incrementally compacting collector

* Divide heap into multiple separately managed regions
e Allows compacting of parts of the heap
e Use mark-sweep or other approach on other regions

* Lang and Dupont:

e Divide heap into n + 1 equally sized segments
e At each GC cycle:

» Choose 2 regions for copying GC
» Mark-sweep other regions
- Rotate regions used for copying GC
e Collector chooses which transition to take next

» Give preference to mark-sweep to limit growth of stack

Effects of incremental compactor

Compact small fragments into single piece

Compactor will pass through every segment of the
heap in n collection cycle

Small cost: extra segment used for a semi-space

/X/

How efficient is Cheney’s alg.?
* Suppose:

e M - size of each semi-space
e R - number of reachable object
e s = average size of each object

* Then:
e # objects allocated between GC cycles: = M/s — R
e [f R =k, M/s - R = # objects reclaimed in each GC cycle

How efficient is Cheney’s alg.?

® Suppose:
e ¢ = CPU cost of GC per object reclaimed
* Then:
g- C
M
-
SR

e g can be made arbitrary small by increasing M
» Increasing heap size reduces GC time
» See Jones and Lins, page 129

Garbage Collection locality issues

Spatial locality: if a memory location is referenced at a
particular time, then it is likely that its neighbors will
be referenced in the near future

Reasons for locality
e Predictability:
« one type of behavior in compute systems
e Program structure:
» related data stored in nearby locations.
» Easy to access next item

e Linear data structure:

» code contains loops that tend to reference arrays or other data
structures by indices

/X/

Garbage Collection locality issues

* On virtual memory systems:

e Cost of page fault is expensive
« Tens of thousands or
» Millions of CPU cycles

e Additional CPU cycles to minimize page faults are
worthwhile

Garbage Collection locality issues

Two spatial locality issues relevant here

e MM system will touch every page in to-space
« MM = allocator + garbage collector
« Increasing heap size increases number of pages touched
e Copying GC reorganizes the layout of objects in the
heap
» Will impact spatial locality of heap data structures

» May compromise mutator’s working set

10

P N

Increase heap size reduces GC time

AAL

semi-spaces

-

pause
700 |
0

semi-spaces

11

/X/

Paging behavior: MSGC vs Copying

* Sophisticated MS
e Use stack or bitmap for mark-phase
e Mark phase does not touch/dirty heap pages
e Lazy sweeping does not affect paging behavior
 Linked into free list and will soon be reallocated
* Copying GC
e Next page to be allocated is likely the one LRU
e LRU is a virtual memory page replacement policy

e If set of pages in memory too small to hold both semi-
spaces

» To-space pages evicted before used for allocation -

Paging behavior: MSGC vs Copying

* Zorn compared paging behavior of collectors

® Conclusions:

e Virtual memory behavior of mark-sweep GC noticeably
better than that of copying

13

Regrouping strategies

Desire for relationship between data be reflected by
their layout in heap

More closely data are related the closer they should be
placed in heap
Relations may be

e Structural: objects are part of same data structure

e Temporal: objects accessed by mutator at similar times

Placing related data on same page reduces page
trafficking since bring data in memory also brings
neighboring data

14

Regrouping strategies

* Objects typically created and destroyed in clusters

¢ Initial layout of objects in memory reflects future
access patterns by user program

* Problem:

e Copying objects may rearrange their order or layout in
the heap

e The way live objects are regrouped depends on the order
that live graph is traversed.

15

/X/

Depth and breadth first copying

T Virtual memory
.

‘- M Sm ma Sm o mE m o ma

| e e i i i e i i

16

/ e L
Regrouping strategies

Can use regrouping strategies to improve locality
e Static regrouping
» Analyze topology of heap data at collection time.
» Move structurally related objects more closely
e Dynamic regrouping
 Cluster objects based on mutator access pattern

» Objects regrouped on-the-fly by incremental copying
collector

Depth first copying generally yields better locality than
breadth-first copying

17

Copying vs Mark-sweep
_Method/Cost _ Marksweep Copying

Initialisation clear mark-bits flip semi-space
Cost negligible negligible
Tracing mark objects copy objects
Cost O(L) O(L)
Sweeping lazily: transferred to allocation none

Cost

Allocation lazily: dominated by init done directly
Cost O(M -R) O(M - R)

L = volume live data in heap
R = residency of user program
M = heap size

» Different constants of proportionality
» Object size is important, especially for copying

» Sophisticated copying collector easier to implement
18

