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Ideal strate tion behaviors




Multiple-area collection

* Problem:
e CPU cost of scavenging depends in part on size of
objects

» Copying small objects no more expensive than marking with
bitmap

» Cost of copying large objects may be prohibitive
- Typically contains bitmaps and strings (atomic)
* Solution:
e Use large object space (separate memory region)

e Assume objects have header and body
» Keep header in semi-space
 Keep body in large object space (use mark-sweep) 2
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Multiple-area collection

* Problem:

e Some objects may have some permanence

e Repeatedly copying such objects is wasteful
* Solution:

e Use separate static area

e Do not garbage collect such region

e Trace region for pointers to heap object outside static
area

* Preview for generational garbage collection



Incrementally compacting collector

* Divide heap into multiple separately managed regions
e Allows compacting of parts of the heap
e Use mark-sweep or other approach on other regions

* Lang and Dupont:

e Divide heap into n + 1 equally sized segments
e At each GC cycle:

» Choose 2 regions for copying GC
» Mark-sweep other regions
- Rotate regions used for copying GC
e Collector chooses which transition to take next

» Give preference to mark-sweep to limit growth of stack



Effects of incremental compactor

Compact small fragments into single piece

Compactor will pass through every segment of the
heap in n collection cycle

Small cost: extra segment used for a semi-space
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How efficient is Cheney’s alg.?
* Suppose:

e M - size of each semi-space
e R - number of reachable object
e s = average size of each object

* Then:
e # objects allocated between GC cycles: = M/s — R
e [f R =k, M/s - R = # objects reclaimed in each GC cycle



How efficient is Cheney’s alg.?

® Suppose:
e ¢ = CPU cost of GC per object reclaimed
* Then:
g- C
M
-
SR

e g can be made arbitrary small by increasing M
» Increasing heap size reduces GC time
» See Jones and Lins, page 129



Garbage Collection locality issues

Spatial locality: if a memory location is referenced at a
particular time, then it is likely that its neighbors will
be referenced in the near future

Reasons for locality
e Predictability:
« one type of behavior in compute systems
e Program structure:
» related data stored in nearby locations.
» Easy to access next item

e Linear data structure:

» code contains loops that tend to reference arrays or other data
structures by indices
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Garbage Collection locality issues

* On virtual memory systems:

e Cost of page fault is expensive
« Tens of thousands or
» Millions of CPU cycles

e Additional CPU cycles to minimize page faults are
worthwhile



Garbage Collection locality issues

Two spatial locality issues relevant here

e MM system will touch every page in to-space
« MM = allocator + garbage collector
« Increasing heap size increases number of pages touched
e Copying GC reorganizes the layout of objects in the
heap
» Will impact spatial locality of heap data structures

» May compromise mutator’s working set
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Increase heap size reduces GC time
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Paging behavior: MSGC vs Copying

* Sophisticated MS
e Use stack or bitmap for mark-phase
e Mark phase does not touch/dirty heap pages
e Lazy sweeping does not affect paging behavior
 Linked into free list and will soon be reallocated
* Copying GC
e Next page to be allocated is likely the one LRU
e LRU is a virtual memory page replacement policy

e If set of pages in memory too small to hold both semi-
spaces

» To-space pages evicted before used for allocation -



Paging behavior: MSGC vs Copying

* Zorn compared paging behavior of collectors

® Conclusions:

e Virtual memory behavior of mark-sweep GC noticeably
better than that of copying
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Regrouping strategies

Desire for relationship between data be reflected by
their layout in heap

More closely data are related the closer they should be
placed in heap
Relations may be

e Structural: objects are part of same data structure

e Temporal: objects accessed by mutator at similar times

Placing related data on same page reduces page
trafficking since bring data in memory also brings
neighboring data
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Regrouping strategies

* Objects typically created and destroyed in clusters

¢ Initial layout of objects in memory reflects future
access patterns by user program

* Problem:

e Copying objects may rearrange their order or layout in
the heap

e The way live objects are regrouped depends on the order
that live graph is traversed.
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Depth and breadth first copying

T Virtual memory
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Regrouping strategies

Can use regrouping strategies to improve locality
e Static regrouping
» Analyze topology of heap data at collection time.
» Move structurally related objects more closely
e Dynamic regrouping
 Cluster objects based on mutator access pattern

» Objects regrouped on-the-fly by incremental copying
collector

Depth first copying generally yields better locality than
breadth-first copying
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Copying vs Mark-sweep
_Method/Cost _ Marksweep  Copying

Initialisation clear mark-bits flip semi-space
Cost negligible negligible
Tracing mark objects copy objects
Cost O(L) O(L)
Sweeping lazily: transferred to allocation none

Cost

Allocation lazily: dominated by init done directly
Cost O(M -R) O(M - R)

L = volume live data in heap
R = residency of user program
M = heap size

» Different constants of proportionality
» Object size is important, especially for copying

» Sophisticated copying collector easier to implement
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