DTTF/NB479: Dszquphsboqiz

Day 33

- Remaining course content
- Remote, fair coin flipping
- Presentations: Protocols, Elliptic curves, Info Theory, Quantum Crypto, Bitcoin, Error-correcting codes, Digital Cash
- Announcements:
- See schedule for weeks 9 and 10
- Project workdays, exam
- Projects: Look at rubrics, example of past project
- Early paper submissions are encouraged!
- Questions?

You can't trust someone to flip a coin remotely if they really want to win the flip

- Alice and Bob each want to win a coin flip
- Why can't they do this over the phone?
oLet's see...

What if Bob flips?
Alice

- Heads!
Bob
- Ill flip a coin. You call it.
- Looks and sees tails.
- Sorry Alice, it was tails...

$$
+
$$

\qquad
\qquad

What if Alice flips?

Alice

- Jill flip a coin. You call it.
Alice
- Jill flip a coin. You call it.
- Sorry Bob, it was heads.
(silent snicker)

\qquad

\author{

- Tails!
 . Tails!
 , .
} you call it. 0

We can use related secrets to guarantee a fair flip

Alice

- Knows something Bob doesn't. Gives him a hint.
- Uses her secret and Bob's hint to calculate 2 guesses for Bob's secret; she can only guess it right $1 / 2$ the time.

Bob

- Knows something Alice doesn't, gives her a hint
- Alice guesses and dares Bob to prove she's wrong
- If she's right, Bob can't argue.
- If she's wrong, Bob can prove it by calc'ing her secret!

Her secret is so secret, the only way Bob could figure it out is using Alice's wrong guess!

What's Alice's secret?
The 2 large prime factors of a huge composite!

And now for something completely different. ..

- You can find square roots easily if the base p is "special", a prime congruent to 3 $(\bmod 4)$
- There are many such primes: $3,5,7,11,13,17,19,23,29,31,37,43, \ldots$
- Proof

We can use related secrets to guarantee a fair flip

Alice

- Knows secret primes
$p \equiv 3(\bmod 4) \& q \equiv 3(\bmod 4)$
Tells Bob hint: $\mathrm{n}=\mathrm{pq}$
- Finds $a^{2} \equiv b^{2} \equiv y(\bmod n)$ using p, q, and ChRT. Guesses one of a or b, say b.

Bob

- Knows random x, tells Alice $y \equiv x^{2}(\bmod n)$
- If $b \equiv \pm x$, Alice won and Bob can't argue
- If $b \neq \pm x$, Bob can calculate p and q using the SRCT

Her secret is so secret, the only way Bob could figure it out is using Alice's wrong guess!

This MATLAB demo ties together many concepts from our number theory work

- Fermat's theorem
-GCD
- Chinese Remainder Theorem
- Finding the 4 solutions to $\mathrm{y}=\mathrm{x}^{2}(\bmod n)$ is as hard as factoring n
- Square Root Compositeness Theorem
- Modular exponentiation
- Modular inverse
- Miller-Rabin*

