
Announcements: 
 

Questions?  
 
This week: 
 Digital signatures, DSA 
 Coin flipping over the phone 

DTTF/NB479: Dszquphsbqiz  Day 30 



RSA Signatures allow you to recover the message 
from the signature; ElGamal signatures don’t 

Sig = f(user, message)  
 

RSA 
Alice chooses:  
 p,q, n=pq,  
 e: gcd(n, (p-1)(q-1))=1,  
 d: ed ≡ 1(mod ((p-1)(q-1)) 

Publishes n, e 
Alice’s signature: 
 y ≡ md(mod n). Delivers (m, y) 

Bob’s verification: 
 Does m ≡ ye (mod n)? 

ElGamal 
Alice chooses:  
 p,primitive root α, secret a, 

and β ≡ αa (mod p) 
 Publishes (p, α, β), keeps a 

secret 
Alice’s signature: 
 Chooses k: random,  

gcd(k, p-1)=1 
 Sends m, (r,s), where: 

r ≡ αk (mod p) 
s ≡ k-1(m – ar) (mod p-1) 

 
Bob’s verification: 
 Does βrrs ≡ αm (mod p)? 



It’s quicker to sign a short digest than to sign a long 
message 

Note that we need to choose  
n > m in RSA, p > m in ElGamal 
 Problem: m could be long! 
 But h(m) is short! 

So Alice sends (m, sig(h(m))) 
 
Eve intercepts this, wants to sign m’ with Alice’s 
signature, so needs sig(h(m’)) = sig(h(m)), and 
thus h(m)=h(m’) 
 Why can’t she do this? 

 



Birthday attacks can be successful on signatures that 
are too short 

Slightly different paradigm: two rooms with r 
people each. What’s the probability that someone 
in this room has the same birthday as someone in 
the other room. 
Approximation:  
 Note that we divide by N, not 2N. 
 But setting the probability = 0.5 and solving for r, we 

get r=c*sqrt(n) again (where c=sqrt(ln 2)~.83) 
 

 Consider a 50-bit hash. Only need 2^25 documents 
 These are relatively easy to generate, actually. 
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Birthday attacks on signatures that are too short 

Mallory generates 2 groups of documents: 
 
 
 
 
Want a match (m1, m2) between them such that h(m1) = 
h(m2) 
Mallory sends (m1, h(m1)) to Alice, who returns signed 
copy: (m1, sig(h(m1)). 
Mallory replaces m1 with m2 and uses sig(h(m1) as the 
signature.  
 The pair (m2, sig(h(m1)) looks like Alice’s valid signature! 

Alice’s defense? What can she do to defend herself? 

r “good docs” r “fraudulent 
 docs” 



Alice’s defense 
She changes a random bit herself! 
Note this changes her signature: (m1’,  sig(h(m1’)) 
 Mallory is forced to generate another message with the 

same hash as this new document.  
 Good luck! 

 
Lessons: 
 Birthday attacks essentially halve the number of bits of 

security.  
So SHA-1 is still secure against them 

 Make a minor change to the document you sign! 



Code-talkers? 
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As far as I can tell, Navajo doesn’t have a word for 
zero. Do-neh-lini means neutral. 



DSA: Digital Signature Algorithm 

1994 
Similar to ElGamal 
 signature with appendix 
 But verification is faster 
 And it’s guaranteed to be more secure 

 
Assume m is already hashed using SHA: 
so we are signing a 160-bit message, m. 



DSA: Digital Signature Algorithm 
Alice’s Setup: 
 m: 160-bit message 
 q: 160-bit prime 
 p: 512-bit prime, such that q is a factor of (p-1) 
 g: a primitive root of p.  
 α≡g(p-1)/q (mod p) 

Then αq ≡ 1 (mod p). (Why?) 
 β ≡ αa. Secret a, 0 < a < q-1 
 Publishes: (p,q,α,β) 

Sig = (r,s) 
 random k, 0 < k < q-1 
 r ≡ αk (mod q)  
 s = k-1(m + ar) (mod q) 

Verify: 
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q) 
 Does (αu1βu2 (mod p))(mod q) = r? 

q=17 
p=103 
g=2 

α=? 
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DSA: Digital Signature Algorithm 
Alice’s Setup: 
 m: 160-bit message 
 q: 160-bit prime 
 p: 512-bit prime, such that q is a factor of (p-1) 
 g: a primitive root of p.  
 α≡g(p-1)/q (mod p) 

Then αq ≡ 1 (mod p). (Why?) 
 β ≡ αa. Secret a, 0 < a < q-1 
 Publishes: (p,q,α,β) 

Sig = (r,s) 
 random k, 0 < k < q-1 
 r ≡ αk (mod q)  
 s = k-1(m + ar) (mod q) 

Verify: 
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q) 
 Does (αu1βu2 (mod p))(mod q) = r? 

q=17 
p=103 
g=2 

α=64 

Advantages over 
ElGamal? 
 In ElGamal, if you could 

solve r = αk (mod p) by 
Pollig-Hellman, you’d have 
k. 

 In DSA, (p-1) has a large 
factor, q. 

 If you could solve the non-q 
factors, there would still be 
q possibilities for k. 

 How many ints (mod p) 
give a specific int (mod q)? 
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DSA: Digital Signature Algorithm 
Alice’s Setup: 
 m: 160-bit message 
 q: 160-bit prime 
 p: 512-bit prime, such that q is a factor of (p-1) 
 g: a primitive root of p.  
 α≡g(p-1)/q (mod p) 

Then αq ≡ 1 (mod p). (Why?) 
 β ≡ αa. Secret a, 0 < a < q-1 
 Publishes: (p,q,α,β) 

Sig = (r,s) 
 random k, 0 < k < q-1 
 r ≡ αk (mod q)  
 s = k-1(m + ar) (mod q) 

Verify: 
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q) 
 Does (αu1βu2 (mod p))(mod q) = r? 

q=17 
p=103 
g=2 

α=64 

How hard is it to search for a 
512-bit prime p = kq + 1 for 
some even number k? 
 How do we search for primes? 
 1/115 of odd 100-digit 

numbers are prime. 
 What fraction of odd 512-bit 

integers are prime? 
 Recall our discussion of the 

density of primes 
 



(Day 21) Using within a primality testing 
scheme 

Finding large probable primes 
 

 #primes < x =  
 
Density of primes: ~1/ln(x) 
 
For 100-digit numbers, ~1/230. 
 
So ~1/115 of odd 100-digit 

numbers are prime 
 
Can start with a random large odd 

number and  iterate, applying 
M-R to remove composites. 
We’ll soon find one that is a 
likely prime. 

Odd? 

div by other small primes? 

Prime by Factoring/ 
advanced techn.? 
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DSA: Digital Signature Algorithm 
Alice’s Setup: 
 m: 160-bit message 
 q: 160-bit prime 
 p: 512-bit prime, such that q is a 

factor of (p-1) 
 g: a primitive root of p.  
 α=g(p-1)/q (mod p) 

Then αq = 1 (mod p). (Why?) 
 β = αa. Secret a, 0 < a < q-1 
 Publishes: (p,q,α,β) 

Sig = (r,s) 
 random k, 0 < k < q-1 
 r = αk (mod p)  
 s = k-1(m + ar) (mod q) 

Verify: 
 Compute u1 = s-1m, u2 = s-1r 
 Does (au1bu2 (mod p))(mod q) = r? 

 

Show that order of ops matters: 
(αk (mod p))(mod q) ≠ (αk (mod q))(mod p) 
 
Easier: find  
(a(mod p))(mod q) ≠ (a(mod q))(mod p) 
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Latest versions 

Recommended: 
 SHA-224/256/384/512 as the hash function 
 q of size 224 and 256 bits 
 p of size 2048 and 3072.  
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