
Announcements:

Questions?

This week:
 Digital signatures, DSA
 Coin flipping over the phone

DTTF/NB479: Dszquphsbqiz Day 30

RSA Signatures allow you to recover the message
from the signature; ElGamal signatures don’t

Sig = f(user, message)

RSA
Alice chooses:
 p,q, n=pq,
 e: gcd(n, (p-1)(q-1))=1,
 d: ed ≡ 1(mod ((p-1)(q-1))

Publishes n, e
Alice’s signature:
 y ≡ md(mod n). Delivers (m, y)

Bob’s verification:
 Does m ≡ ye (mod n)?

ElGamal
Alice chooses:
 p,primitive root α, secret a,

and β ≡ αa (mod p)
 Publishes (p, α, β), keeps a

secret
Alice’s signature:
 Chooses k: random,

gcd(k, p-1)=1
 Sends m, (r,s), where:

r ≡ αk (mod p)
s ≡ k-1(m – ar) (mod p-1)

Bob’s verification:
 Does βrrs ≡ αm (mod p)?

It’s quicker to sign a short digest than to sign a long
message

Note that we need to choose
n > m in RSA, p > m in ElGamal
 Problem: m could be long!
 But h(m) is short!

So Alice sends (m, sig(h(m)))

Eve intercepts this, wants to sign m’ with Alice’s
signature, so needs sig(h(m’)) = sig(h(m)), and
thus h(m)=h(m’)
 Why can’t she do this?

Birthday attacks can be successful on signatures that
are too short

Slightly different paradigm: two rooms with r
people each. What’s the probability that someone
in this room has the same birthday as someone in
the other room.
Approximation:
 Note that we divide by N, not 2N.
 But setting the probability = 0.5 and solving for r, we

get r=c*sqrt(n) again (where c=sqrt(ln 2)~.83)

 Consider a 50-bit hash. Only need 2^25 documents
 These are relatively easy to generate, actually.

N
r

e
2

1
−

−

Birthday attacks on signatures that are too short

Mallory generates 2 groups of documents:

Want a match (m1, m2) between them such that h(m1) =
h(m2)
Mallory sends (m1, h(m1)) to Alice, who returns signed
copy: (m1, sig(h(m1)).
Mallory replaces m1 with m2 and uses sig(h(m1) as the
signature.
 The pair (m2, sig(h(m1)) looks like Alice’s valid signature!

Alice’s defense? What can she do to defend herself?

r “good docs” r “fraudulent
 docs”

Alice’s defense
She changes a random bit herself!
Note this changes her signature: (m1’, sig(h(m1’))
 Mallory is forced to generate another message with the

same hash as this new document.
 Good luck!

Lessons:
 Birthday attacks essentially halve the number of bits of

security.
So SHA-1 is still secure against them

 Make a minor change to the document you sign!

Code-talkers?

ht
tp

://
xk

cd
.c

om
/c

25
7.

ht
m

l

As far as I can tell, Navajo doesn’t have a word for
zero. Do-neh-lini means neutral.

DSA: Digital Signature Algorithm

1994
Similar to ElGamal
 signature with appendix
 But verification is faster
 And it’s guaranteed to be more secure

Assume m is already hashed using SHA:
so we are signing a 160-bit message, m.

DSA: Digital Signature Algorithm
Alice’s Setup:
 m: 160-bit message
 q: 160-bit prime
 p: 512-bit prime, such that q is a factor of (p-1)
 g: a primitive root of p.
 α≡g(p-1)/q (mod p)

Then αq ≡ 1 (mod p). (Why?)
 β ≡ αa. Secret a, 0 < a < q-1
 Publishes: (p,q,α,β)

Sig = (r,s)
 random k, 0 < k < q-1
 r ≡ αk (mod q)
 s = k-1(m + ar) (mod q)

Verify:
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q)
 Does (αu1βu2 (mod p))(mod q) = r?

q=17
p=103
g=2

α=?

1-3

DSA: Digital Signature Algorithm
Alice’s Setup:
 m: 160-bit message
 q: 160-bit prime
 p: 512-bit prime, such that q is a factor of (p-1)
 g: a primitive root of p.
 α≡g(p-1)/q (mod p)

Then αq ≡ 1 (mod p). (Why?)
 β ≡ αa. Secret a, 0 < a < q-1
 Publishes: (p,q,α,β)

Sig = (r,s)
 random k, 0 < k < q-1
 r ≡ αk (mod q)
 s = k-1(m + ar) (mod q)

Verify:
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q)
 Does (αu1βu2 (mod p))(mod q) = r?

q=17
p=103
g=2

α=64

Advantages over
ElGamal?
 In ElGamal, if you could

solve r = αk (mod p) by
Pollig-Hellman, you’d have
k.

 In DSA, (p-1) has a large
factor, q.

 If you could solve the non-q
factors, there would still be
q possibilities for k.

 How many ints (mod p)
give a specific int (mod q)?

4

DSA: Digital Signature Algorithm
Alice’s Setup:
 m: 160-bit message
 q: 160-bit prime
 p: 512-bit prime, such that q is a factor of (p-1)
 g: a primitive root of p.
 α≡g(p-1)/q (mod p)

Then αq ≡ 1 (mod p). (Why?)
 β ≡ αa. Secret a, 0 < a < q-1
 Publishes: (p,q,α,β)

Sig = (r,s)
 random k, 0 < k < q-1
 r ≡ αk (mod q)
 s = k-1(m + ar) (mod q)

Verify:
 Compute u1 ≡ s-1m (mod q), u2 ≡ s-1r (mod q)
 Does (αu1βu2 (mod p))(mod q) = r?

q=17
p=103
g=2

α=64

How hard is it to search for a
512-bit prime p = kq + 1 for
some even number k?
 How do we search for primes?
 1/115 of odd 100-digit

numbers are prime.
 What fraction of odd 512-bit

integers are prime?
 Recall our discussion of the

density of primes

(Day 21) Using within a primality testing
scheme

Finding large probable primes

 #primes < x =

Density of primes: ~1/ln(x)

For 100-digit numbers, ~1/230.

So ~1/115 of odd 100-digit

numbers are prime

Can start with a random large odd

number and iterate, applying
M-R to remove composites.
We’ll soon find one that is a
likely prime.

Odd?

div by other small primes?

Prime by Factoring/
advanced techn.?

n

no

no

yes

yes

prime

Pass M-R?

)ln(
)(

x
xx →π

DSA: Digital Signature Algorithm
Alice’s Setup:
 m: 160-bit message
 q: 160-bit prime
 p: 512-bit prime, such that q is a

factor of (p-1)
 g: a primitive root of p.
 α=g(p-1)/q (mod p)

Then αq = 1 (mod p). (Why?)
 β = αa. Secret a, 0 < a < q-1
 Publishes: (p,q,α,β)

Sig = (r,s)
 random k, 0 < k < q-1
 r = αk (mod p)
 s = k-1(m + ar) (mod q)

Verify:
 Compute u1 = s-1m, u2 = s-1r
 Does (au1bu2 (mod p))(mod q) = r?

Show that order of ops matters:
(αk (mod p))(mod q) ≠ (αk (mod q))(mod p)

Easier: find
(a(mod p))(mod q) ≠ (a(mod q))(mod p)

5

Latest versions

Recommended:
 SHA-224/256/384/512 as the hash function
 q of size 224 and 256 bits
 p of size 2048 and 3072.

	Slide Number 1
	RSA Signatures allow you to recover the message from the signature; ElGamal signatures don’t
	It’s quicker to sign a short digest than to sign a long message
	Birthday attacks can be successful on signatures that are too short
	Birthday attacks on signatures that are too short
	Alice’s defense
	Code-talkers?�
	DSA: Digital Signature Algorithm
	DSA: Digital Signature Algorithm
	DSA: Digital Signature Algorithm
	DSA: Digital Signature Algorithm
	(Day 21) Using within a primality testing scheme
	DSA: Digital Signature Algorithm
	Latest versions

