DTTF/NB479: Dszquphsboqiz

- Announcements:
- Questions?
- This week:
- Digital signatures, DSA
- Coin flipping over the phone

RSA Signatures allow you to recover the message from the signature; ElGamal signatures don't

Sig = f(user, message)

RSA

- Alice chooses:
- $p, q, n=p q$,
- $e: \operatorname{gcd}(n,(p-1)(q-1))=1$,
- d: ed $\equiv 1(\bmod ((p-1)(q-1))$
- Publishes n, e
- Alice's signature:
- $y \equiv m^{d}(\bmod n)$. Delivers (m, y)
- Bob's verification:
- Does $m \equiv y^{e}(\bmod n)$?

EJGamal

- Alice chooses:
- p, primitive root α, secret a, and $\beta \equiv \alpha^{\mathrm{a}}(\bmod p)$
- Publishes (p, α, β), keeps a secret
- Alice's signature:
- Chooses k: random, $\operatorname{gcd}(k, p-1)=1$
- Sends $m,(r, s)$, where:
- $r \equiv \alpha^{k}(\bmod p)$
\& $s \equiv k^{-1}(m-a r)(m o d p-1)$
- Bob's verification:
- Does $\beta^{r} r^{s} \equiv \alpha^{m}(\bmod p)$?

It's quicker to sign a short digest than to sign a long message

- Note that we need to choose
$n>m$ in RSA, $p>m$ in ElGamal
- Problem: m could be long!
- But $h(m)$ is short!
- So Alice sends (m, sig(h(m)))
- Eve intercepts this, wants to sign m' with Alice's signature, so needs sig(h(m')) = sig(h(m)), and thus $h(m)=h\left(m^{\prime}\right)$
- Why can't she do this?

Birthday attacks can be successful on signatures that are too short

- Slightly different paradigm: two rooms with r people each. What's the probability that someone in this room has the same birthday as someone in the other room.
- Approximation:

- Note that we divide by N, not $2 N$.
- But setting the probability $=0.5$ and solving for r, we get $r=c * s q r t(n)$ again (where $c=s q r t(\ln 2) \sim .83)$
- Consider a 50-bit hash. Only need 2^25 documents
- These are relatively easy to generate, actually.

Birthday attacks on signatures that are too short

- Mallory generates 2 groups of documents:

- Want a match $\left(m_{1}, m_{2}\right)$ between them such that $h\left(m_{1}\right)=$ $h\left(m_{2}\right)$
- Mallory sends $\left(m_{1}, h\left(m_{1}\right)\right)$ to Alice, who returns signed copy: $\left(m_{1}, \operatorname{sig}\left(h\left(m_{1}\right)\right)\right.$.
- Mallory replaces m_{1} with m_{2} and uses sig($h\left(m_{1}\right)$ as the signature.
- The pair $\left(m_{2}\right.$, sig $\left(h\left(m_{1}\right)\right)$ looks like Alice's valid signature!
- Alice's defense? What can she do to defend herself?

Alice's defense

- She changes a random bit herself!
- Note this changes her signature: $\left(m_{1}{ }^{\prime}, \operatorname{sig}\left(h\left(m_{1}{ }^{\prime}\right)\right)\right.$
- Mallory is forced to generate another message with the same hash as this new document.
- Good luck!
- Lessons:
- Birthday attacks essentially halve the number of bits of security.
- So SHA-1 is still secure against them
- Make a minor change to the document you sign!

Code-talkers?

A'LA'IH, DÓNEA'LINS, DO'NEHLINI, ALLA'IH, A'LA'IH, DONEHLLINI, DO'NEH'LINI, DO'NEH'LINI, $A^{\prime} L A^{\prime} I H, \quad A^{\prime} L A I H$, DO'NEH'LINI, A'LA'IH, DO'NEH'LINI', DO'NEH'LINI, DONEH'LINI , . .

FOR ADDED SECURITY, AFTER WE ENCRYPT THE DATA STREAM, WE SEND IT THROUGH OUR NAVAJO CODE TALKER.
 zero. Do-neh-lini means neutral.

DSA: Digital Signature Algorithm

- 1994
- Similar to ElGamal
- signature with appendix
- But verification is faster
- And it's guaranteed to be more secure
- Assume m is already hashed using SHA: so we are signing a 160-bit message, m.

DSA: Digital Signature Algorithm

- Alice's Setup:
- m: 160-bit message
$\mathrm{q}=17 \quad$ - $\mathrm{q}: 160$-bit prime
p: 512-bit prime, such that q is a factor of $(p-1)$
- g : a primitive root of p.
- $\alpha=g^{(p-1) / q}(\bmod p)$
- Then $\alpha^{q} \equiv 1$ (mod p). (Why?)
- $\beta \equiv \alpha^{a}$. Secret $a, 0<a<q-1$
- Publishes: (p, q, α, β)
- $\operatorname{Sig}=(r, s)$
- random $\mathrm{k}, 0<\mathrm{k}<\mathrm{q}-1$
- $r \equiv \alpha^{k}(\bmod q)$
- $s=k^{-1}(m+a r)(\bmod q)$
- Verify:
- Compute u1 $\equiv \mathrm{s}^{-1} \mathrm{~m}(\bmod q), \mathrm{u} 2 \equiv \mathrm{~s}^{-1} \mathrm{r}(\bmod q)$
- Does $\left(\alpha^{\mathrm{u} 1} \beta^{\mathrm{u} 2}(\bmod p)\right)(\bmod q)=r$?

DSA: Digital Signature Algorithm

- Alice's Setup:
- m: 160-bit message
- q: 160-bit prime
$q=17$ - $p: 512$-bit prime, such that q is a factor of $(p-1)$
$p=103$
$\mathrm{g}=2$
$\alpha=64$
- g: a primitive root of p.
- $\alpha \equiv g^{(p-1) / q}(\bmod p)$
- Then $\alpha^{q} \equiv 1(\bmod p)$. (Why?)
- $\beta \equiv \alpha^{a}$. Secret $a, 0<a<q-1$
- Publishes: (p, q, α, β)
- $\operatorname{Sig}=(r, s)$
- random $\mathrm{k}, 0<\mathrm{k}<\mathrm{q}-1$
- $r \equiv \alpha^{k}(\bmod q)$
- $s=k^{-1}(m+a r)(\bmod q)$
- Verify:
- Compute u1 $\equiv \mathrm{s}^{-1} m(\bmod q), \mathrm{u} 2 \equiv \mathrm{~s}^{-1} \mathrm{r}(\bmod q)$
- Does $\left(\alpha^{u 11} \beta^{u 2}(\bmod p)\right)(\bmod q)=r$?
- Advantages over ElGamal?
- In ElGamal, if you could solve $r=\alpha^{k}(\bmod p)$ by Pollig-Hellman, you'd have k.
- In DSA, (p-1) has a large factor, q.
- If you could solve the non-q factors, there would still be q possibilities for k.
- How many ints (mod p) give a specific int $(\bmod q)$?

DSA: Digital Signature Algorithm

- Alice's Setup:

」 m: 160-bit message

- q: 160-bit prime
p: 512-bit prime, such that q is a factor of (p-1)
- $\mathrm{g}:$ a primitive root of p.
- $\alpha=g^{(p-1) /(q)}(\bmod p)$
- Then $\alpha^{q} \equiv 1$ (mod p). (Why?)
- $\beta \equiv \alpha^{a}$. Secret $a, 0<a<q-1$
- Publishes: (p, q, α, β)
- $\operatorname{Sig}=(r, s)$
- random $k, 0<k<q-1$
- $r \equiv \alpha^{k}(\bmod q)$
, $s=k^{-1}(m+a r)(\bmod q)$
- Verify:
- Compute u1 $\equiv \mathrm{s}^{-1} \mathrm{~m}(\bmod q), \mathrm{u} 2 \equiv \mathrm{~s}^{-1} \mathrm{r}(\bmod q)$
- Does $\left(\alpha^{u 11} \beta^{u 2}(\bmod p)\right)(\bmod q)=r$?
- How hard is it to search for a 512-bit prime $p=k q+1$ for some even number k?
- How do we search for primes?
- 1/115 of odd 100-digit numbers are prime.
- What fraction of odd 512-bit integers are prime?
- Recall our discussion of the density of primes

(Day 21) Using within a primality testing scheme

- Finding large probable primes
- \#primes $<x=\pi(x) \rightarrow \frac{x}{\ln (x)}$

Density of primes: $\sim 1 / \ln (x)$
For 100 -digit numbers, $\sim 1 / 230$.
So $\sim 1 / 115$ of odd 100 -digit numbers are prime

DSA: Digital Signature Algorithm

- Alice's Setup:
- m: 160-bit message
- q: 160-bit prime
- p: 512-bit prime, such that q is a factor of (p-1)
- g : a primitive root of p.
- $\alpha=g^{(p-1) / q}(\bmod p)$
- Then $\alpha^{q}=1(\bmod p)$. (Why?)
- $\beta=\alpha^{a}$. Secret $a, 0<a<q-1$
- Publishes: (p, q, α, β)
- \quad Sig $=(r, s)$
- random $k, 0<k<q-1$
- $r=\alpha^{k}(\bmod p)$
, $s=k^{-1}(m+a r)(\bmod q)$
- Verify:
- Compute u1 $=s^{-1} m, ~ u 2=s^{-1} r$
- Does $\left(a^{u 11} b^{u 2}(\bmod p)\right)(\bmod q)=r$?

Latest versions

- Recommended:
- SHA-224/256/384/512 as the hash function
- q of size 224 and 256 bits
- p of size 2048 and 3072.

