DTTF/NB479: Dszquphsbqiz

- Announcements:
- Questions?
- This week:
 - Digital signatures, DSA
 - Flipping coins over the phone

Why are digital signatures important?

- Compare with paper signatures
- Danger: Eve would like to use your signature on other documents!
- Solution: sig = f(m, user)
 - Let m be the message (document)
- Algorithms we'll study:
 - RSA
 - ElGamal
 - DSA (Digital Signature Algorithm)

RSA Signatures

Alice chooses:

- p,q, n=pq,
- e: gcd(e, (p-1)(q-1))=1,
- d: ed $\equiv 1 \pmod{((p-1)(q-1))}$ [d is the "pen" Alice uses]
- Publishes n, e ["glasses" Bob uses to see the writing]
- Alice's signature uses the decryption exponent.
 - $y \equiv m^d \pmod{n}$. Delivers (m, y)
- Bob's verification:
 - Does $m \equiv y^e \pmod{n}$?
- Show the verification works. (Q1)
- Note that given only the signature y, and public info e and n, Bob can compute the message, m.

RSA Signatures

Alice chooses:

- p,q, n=pq,
- e: gcd(n, (p-1)(q-1))=1,
- d: ed ≡ 1(mod ((p-1)(q-1))
- Publishes n, e
- Alice's signature:
 - $y \equiv m^d \pmod{n}$. Delivers (m, y)
- Bob's verification:
 - Does m ≡ y^e (mod n)?

Eve's schemes:

- Can she use Alice's signature on a different document, m₁?
- Can she compute a new y₁, so that m₁ = y₁^e?
- Can she choose a new y₁ first, then compute m₁ = y₁^e?

Blind Signature

Alice chooses:

- p,q, n=pq,
- e: gcd(n, (p-1)(q-1))=1,
- d: ed $\equiv 1 \pmod{((p-1)(q-1))}$
- Publishes n, e
- Bob wants m signed
- Bob chooses:
 - k: random, gcd(k, n)=1
- Bob sends: t = k^em (mod n)
- Alice's signature:
 - $s \equiv t^d \pmod{n}$.
- Bob's verification:
 - Computes sk⁻¹

Bob wants Alice to sign a document as a method of time-stamping it, but doesn't want to release the contents yet.*

Verification:

- Find sk⁻¹ in terms of m
- What is the significance of this?
- Why can't Alice read m?
 What's the danger to
 - Alice of a blind signature?

* He can publish her signature, which can be verified later, or he can submit it to an authority to obtain an actual timestamp: <u>http://en.wikipedia.org/wiki/Trusted_timestamping</u>

ElGamal Signatures don't reveal the message during verification

Many different valid signatures for a given message

- Alice chooses:
 - p,primitive root α , $\beta \equiv \alpha^a \pmod{p}$
 - Publishes (p, α, β), keeps a secret
- Alice's signature:
 - Chooses k: random, gcd(k, p-1)=1
 - Sends (m, (r,s)), where:
 - $\mathbf{r} \equiv \alpha^k \pmod{p}$
 - $s \equiv k^{-1}(m ar) \pmod{p-1}$
- Bob's verification:
 - Does $\beta^{r}r^{s} \equiv \alpha^{m} \pmod{p}$?

ElGamal Signatures

- Many different valid signatures for a given message
- Alice chooses:
 - p,primitive root α, secret a, and β ≡ α^a (mod p)
 - Publishes (p, α, β), keeps a secret
- Alice's signature:
 - Chooses k: random, gcd(k, p-1)=1
 - Sends m, (r,s), where:
 - $r \equiv \alpha^k \pmod{p}$
 - $s \equiv k^{-1}(m ar) \pmod{p-1}$
- Bob's verification:
 - Does $\beta^{r}r^{s} \equiv \alpha^{m} \pmod{p}$?

- Notice that one can't compute m from (r,s).
- Show the verification works.
- Why can't Eve apply the signature to another message?
- If Eve learns a, she can forge the signature
- Note: Alice needs to randomize k each time, else Eve can recognize this, and can compute k and a relatively quickly.