
Announcements:

Questions?

This week:
 Discrete Logs, Diffie-Hellman, ElGamal
 Hash Functions and SHA-1
 Birthday attacks

DTTF/NB479: Dszquphsbqiz Day 27

Hash Functions

Goal: to provide a unique “fingerprint” of the message.
How? Must demonstrate 3 properties:

1. Fast to compute y from m.
2. One-way: given y = h(m), can’t find any m’ satisfying h(m’) = y

easily.
3. Strongly collision-free: Can’t find any m1 != m2 such that

h(m1)=h(m2) easily
4. (Sometimes we can settle for weakly collision-free: given m, can’t

find m’ != m with h(m) = h(m’).

Message m
(long)

Message digest, y
(Shorter fixed length) Cryptographic hash

Function, h
Shrinks data, so 2 messages can
have the same digest: m1 != m2, but
H(m1) = h(m2)

EHA: Easy Hash Algorithm
Break m into n-bit blocks,
append zeros to get a
multiple of n.
There are L of them,
where L =|m|/n

Fast! But not very secure.
Doing a left shift on the
rows helps a little:
 Define as left-

shifting m by y bits
 Then

=

=

ln21

22221

11211

2

1

...
mmm

mmm
mmm

m

m
m

m

ll

n

n

l

[]nccc ...21

⇓⇓⇓⇓
⊕⊕⊕⊕

ym↵

ymm ii ↵=′

=h(m)

−+ 1,1,

212322

11211

...

...

llllll

n

mmm

mmm
mmm

EHA: Easy Hash Algorithm

[]nccc ...21

⇓⇓⇓⇓
⊕⊕⊕⊕

=h(m)

Exercise:
1. Show that the basic (unrotated) version doesn’t satisfy properties 2 and 3.
2. Show that the rotated version doesn’t satisfy properties 2 and 3 either.

Conclusion: Need nonlinearity!

3 properties:
1. Fast to compute
2. One-way: given y =

h(m), can’t find any
m’ satisfying h(m’) =
y easily.

3. Strongly collision-
free: Can’t find m1 !=
m2 such that
h(m1)=h(m2)

=

=

ln21

22221

11211

2

1

...
mmm

mmm
mmm

m

m
m

m

ll

n

n

l

SHA-1: Secure Hash Algorithm
 NSA NIST

 “This standard specifies a Secure Hash Algorithm (SHA), which is

necessary to ensure the security of the Digital Signature Algorithm (DSA).
When a message of any length < 264 bits is input, the SHA produces a 160-
bit output called a message digest. The message digest is then input to the
DSA, which computes the signature for the message. Signing the message
digest rather than the message often improves the efficiency of the process,
because the message digest is usually much smaller than the message.
The same message digest should be obtained by the verifier of the
signature when the received version of the message is used as input to
SHA. The SHA is called secure because it is designed to be computationally
infeasible to recover a message corresponding to the message digest. Any
change to the message in transit will, with a very high probability, result in a
different message digest, and the signature will fail to verify. The SHA is
based on principles similar to those used by Professor Ronald L. Rivest of
MIT when designing the MD4 message digest algorithm, and is closely
modelled after that algorithm.”

 (Proposed Federal Information Processing Standard for Secure Hash
Standard,” Federal Register, v. 57, n. 177, 11 Sep 1992, p. 41727)

…how?

SHA-1: Prepare the message
1. Prepare the message.

Given m, create mmm…m1000…000xxxxx….x:
 Append a 1 and then enough zeros to make the total congruent

to 448 (mod 512) bits (to leave room for the length)
 Append the length of m (≤ 264, so can be written in 64 bits)
 Break into L 512-bit chunks. Each will be used to compress

into a 160- bit total message digest.

Example: Encode m with length 5000 bits.
What is L?

1

SHA-1: Notation

Bitwise AND
Bitwise OR
Bitwise XOR
Bitwise NOT
Left-shift, with wrap-around
Addition, mod 232 +

↵
¬
⊕
∨
∧

2

SHA-1: Iterative compression
 Idea: iterate over all of the L blocks, outputting a value

that is a function of the previous output and the current
block:

Now, the function h’…

m1 m2

X0 X1 X2

h’ h’

m3

X3

h’

mL

XL

h’

=h(m)

3

(X0 is constant)

SHA-1: Compression function: h’
Input: X0 (160 bits), m1 (512 bits): Output: X1 (160 bits)

() 1161483 ↵⊕⊕⊕= −−−− ttttt WWWWW

Expand m1 from
5122560 bits.

m1=(W0..W15) (32 bits each)

Initialization
4 rounds of 20

iterations
each:

Each round uses
a different K
and different
nonlinear
mixing
function f

W79 … W16 … W19

m1

W0 W1 W15 …

=

=

a
b
c
d
e

a
b
c
d
e

H
H
H
H
H

X

0

1

2

3

4

0

K0..19=0x5A827999

Round 1

K20..39=6ED9EBA1

K40..59=8F1BBCDC

K60..79=CA62C1D6

Round 2 Round 3 Round 4

… (20 iters) 10 XX

a
b
c
d
e

=+

4-5

SHA-1: Iterative compression
 Repeat the algorithm on the previous slide L times until

you’ve compressed the whole message into a single
160-bit vector.

Each can be implemented in hardware.

m1 m2

X0 X1 X2

h’ h’

m3

X3

h’

mL

XL

h’

=h(m)

6

Interesting trivia

The NSA added the left shift in w after the
fact. The change “corrects a technical flaw
that made the standard less secure than
have been thought”.

(Proposed Revision of Federal Information Processing Standard (FIPS) 180,
for Secure Hash Standard,” Federal Register, v. 59, n. 131, 11 Jul 1994, p.
35317-35318)

7-9

Summary

What’s an attack on SHA-1 look like?

In other words, how do we find collisions?

Stay tuned…
 Next time we’ll learn what birthdays have to do with collisions

How long before SHA-1 will be broken?

	Slide Number 1
	Hash Functions
	EHA: Easy Hash Algorithm
	EHA: Easy Hash Algorithm
	SHA-1: Secure Hash Algorithm
	SHA-1: Prepare the message
	SHA-1: Notation
	SHA-1: Iterative compression
	SHA-1: Compression function: h’
	SHA-1: Iterative compression
	Interesting trivia
	Summary

